Talk to us?

- NEETMDS- courses
Oral and Maxillofacial Surgery

Hyperbaric Oxygen Therapy (HBOT)

Hyperbaric Oxygen Therapy (HBOT) is a medical treatment that involves the inhalation of 100% oxygen at pressures greater than atmospheric pressure, typically between 2 to 3 atmospheres (ATA). This therapy is used to enhance oxygen delivery to tissues, particularly in cases of ischemia, infection, and compromised healing. Below is a detailed overview of the advantages and mechanisms of HBOT, particularly in the context of surgical applications and tissue healing.

Mechanism of Action

  1. Increased Oxygen Availability:

    • Under hyperbaric conditions, the solubility of oxygen in plasma increases significantly, allowing for greater oxygen delivery to tissues, even in areas with compromised blood flow.
  2. Enhanced Vascular Supply:

    • HBOT promotes the formation of new blood vessels (neovascularization) and improves the overall vascular supply to tissues. This is particularly beneficial in areas that have been irradiated or are ischemic.
  3. Improved Oxygen Perfusion:

    • The therapy enhances oxygen perfusion to ischemic areas, which is crucial for healing and recovery, especially in cases of infection or tissue damage.
  4. Bactericidal and Bacteriostatic Effects:

    • Increased oxygen concentrations have a direct bactericidal effect on certain anaerobic bacteria and enhance the bacteriostatic action against aerobic bacteria. This can help in the management of infections, particularly in chronic wounds or osteomyelitis.

Advantages of Hyperbaric Oxygen Therapy

  1. Support for Soft Tissue Graft Healing:

    • While HBOT may not fully recruit the vascular support necessary for sustaining bone graft healing, it is beneficial in supporting soft tissue graft healing. The increased oxygen supply helps minimize compartmentalization and promotes better integration of grafts.
  2. Revascularization of Irradiated Tissues:

    • In patients with irradiated tissues, HBOT increases blood oxygen tension, enhancing the diffusion of oxygen into the tissues. This revascularization improves fibroblastic cellular density, which is essential for tissue repair and regeneration. It also limits the amount of non-viable tissue that may need to be surgically removed.
  3. Adjunctive Therapy in Surgical Procedures:

    • HBOT is often used as an adjunctive therapy in surgical procedures involving compromised tissues, such as in cases of necrotizing fasciitis, diabetic foot ulcers, and chronic non-healing wounds. It can enhance the effectiveness of surgical interventions by improving tissue oxygenation and promoting healing.
  4. Reduction of Complications:

    • By improving oxygenation and reducing the risk of infection, HBOT can help decrease postoperative complications, leading to better overall outcomes for patients undergoing surgery in compromised tissues.

Clinical Applications

  • Osteoradionecrosis: HBOT is commonly used in the management of osteoradionecrosis, a condition that can occur in patients who have received radiation therapy for head and neck cancers. The therapy helps to revascularize the affected bone and improve healing.

  • Chronic Wounds: It is effective in treating chronic wounds, particularly in diabetic patients, by enhancing oxygen delivery and promoting healing.

  • Infection Management: HBOT is beneficial in managing infections, especially those caused by anaerobic bacteria, by increasing the local oxygen concentration and enhancing the immune response.

  • Flap and Graft Survival: The therapy is used to improve the survival of flaps and grafts in reconstructive surgery by enhancing blood flow and oxygenation to the tissues.

Punch Biopsy Technique

punch biopsy is a medical procedure used to obtain a small cylindrical sample of tissue from a lesion for diagnostic purposes. This technique is particularly useful for mucosal lesions located in areas that are difficult to access with conventional biopsy methods. Below is an overview of the punch biopsy technique, its applications, advantages, and potential limitations.

Punch Biopsy

  • Procedure:

    • A punch biopsy involves the use of a specialized instrument called a punch (a circular blade) that is used to remove a small, cylindrical section of tissue from the lesion.
    • The punch is typically available in various diameters (commonly ranging from 2 mm to 8 mm) depending on the size of the lesion and the amount of tissue needed for analysis.
    • The procedure is usually performed under local anesthesia to minimize discomfort for the patient.
  • Technique:

    1. Preparation: The area around the lesion is cleaned and sterilized.
    2. Anesthesia: Local anesthetic is administered to numb the area.
    3. Punching: The punch is pressed down onto the lesion, and a twisting motion is applied to cut through the skin or mucosa, obtaining a tissue sample.
    4. Specimen Collection: The cylindrical tissue sample is then removed, and any bleeding is controlled.
    5. Closure: The site may be closed with sutures or left to heal by secondary intention, depending on the size of the biopsy and the location.

Applications

  • Mucosal Lesions: Punch biopsies are particularly useful for obtaining samples from mucosal lesions in areas such as:

    • Oral cavity (e.g., lesions on the tongue, buccal mucosa, or gingiva)
    • Nasal cavity
    • Anus
    • Other inaccessible regions where traditional biopsy methods may be challenging.
  • Skin Lesions: While primarily used for mucosal lesions, punch biopsies can also be performed on skin lesions to diagnose conditions such as:

    • Skin cancers (e.g., melanoma, basal cell carcinoma)
    • Inflammatory skin diseases (e.g., psoriasis, eczema)

Advantages

  • Minimal Invasiveness: The punch biopsy technique is relatively quick and minimally invasive, making it suitable for outpatient settings.
  • Preservation of Tissue Architecture: The cylindrical nature of the sample helps preserve the tissue architecture, which is important for accurate histopathological evaluation.
  • Accessibility: It allows for sampling from difficult-to-reach areas that may not be accessible with other biopsy techniques.

Limitations

  • Tissue Distortion: As noted, the punch biopsy technique can produce some degree of crushing or distortion of the tissues. This may affect the histological evaluation, particularly in delicate or small lesions.
  • Sample Size: The size of the specimen obtained may be insufficient for certain diagnostic tests, especially if a larger sample is required for comprehensive analysis.
  • Potential for Scarring: Depending on the size of the punch and the location, there may be a risk of scarring or changes in the appearance of the tissue after healing.

Marsupialization

Marsupialization, also known as decompression, is a surgical procedure used primarily to treat cystic lesions, particularly odontogenic cysts, by creating a surgical window in the wall of the cyst. This technique aims to reduce intracystic pressure, promote the shrinkage of the cyst, and encourage bone fill in the surrounding area.

Key Features of Marsupialization

  1. Indication:

    • Marsupialization is indicated for large cystic lesions that are not amenable to complete excision due to their size, location, or proximity to vital structures. It is commonly used for:
      • Odontogenic keratocysts
      • Dentigerous cysts
      • Radicular cysts
      • Other large cystic lesions in the jaw
  2. Surgical Technique:

    • Creation of a Surgical Window:
      • The procedure begins with the creation of a window in the wall of the cyst. This is typically done through an intraoral approach, where an incision is made in the mucosa overlying the cyst.
    • Evacuation of Cystic Content:
      • The cystic contents are evacuated, which helps to decrease the intracystic pressure. This reduction in pressure is crucial for promoting the shrinkage of the cyst and facilitating bone fill.
    • Suturing the Cystic Lining:
      • The remaining cystic lining is sutured to the edge of the oral mucosa. This can be done using continuous sutures or interrupted sutures, depending on the surgeon's preference and the specific clinical situation.
  3. Benefits:

    • Pressure Reduction: By decreasing the intracystic pressure, marsupialization can lead to the gradual reduction in the size of the cyst.
    • Bone Regeneration: The procedure promotes bone fill in the area previously occupied by the cyst, which can help restore normal anatomy and function.
    • Minimally Invasive: Compared to complete cyst excision, marsupialization is less invasive and can be performed with less morbidity.
  4. Postoperative Care:

    • Patients may experience some discomfort and swelling following the procedure, which can be managed with analgesics.
    • Regular follow-up appointments are necessary to monitor the healing process and assess the reduction in cyst size.
    • Oral hygiene is crucial to prevent infection at the surgical site.
  5. Outcomes:

    • Marsupialization can be an effective treatment for large cystic lesions, leading to significant reduction in size and promoting bone regeneration. In some cases, if the cyst does not resolve completely, further treatment options, including complete excision, may be considered.

Seddon’s Classification of Nerve Injuries

 

  1. Neuropraxia:

    • Definition: This is the mildest form of nerve injury, often caused by compression or mild trauma.
    • Sunderland Classification: Type I (10).
    • Nerve Sheath: Intact; the surrounding connective tissue remains undamaged.
    • Axons: Intact; the nerve fibers are not severed.
    • Wallerian Degeneration: None; there is no degeneration of the distal nerve segment.
    • Conduction Failure: Transitory; there may be temporary loss of function, but it is reversible.
    • Spontaneous Recovery: Complete recovery is expected.
    • Time of Recovery: Typically within 4 weeks.
  2. Axonotmesis:

    • Definition: This injury involves damage to the axons while the nerve sheath remains intact. It is often caused by more severe trauma, such as crush injuries.
    • Sunderland Classification: Type II (20), Type III (30), Type IV (40).
    • Nerve Sheath: Intact; the connective tissue framework is preserved.
    • Axons: Interrupted; the nerve fibers are damaged but the sheath allows for potential regeneration.
    • Wallerian Degeneration: Yes, partial; degeneration occurs in the distal segment of the nerve.
    • Conduction Failure: Prolonged; there is a longer-lasting loss of function.
    • Spontaneous Recovery: Partial recovery is possible, depending on the extent of the injury.
    • Time of Recovery: Recovery may take months.
  3. Neurotmesis:

    • Definition: This is the most severe type of nerve injury, where both the axons and the nerve sheath are disrupted. It often results from lacerations or severe trauma.
    • Sunderland Classification: Type V (50).
    • Nerve Sheath: Interrupted; the connective tissue is damaged, complicating regeneration.
    • Axons: Interrupted; the nerve fibers are completely severed.
    • Wallerian Degeneration: Yes, complete; degeneration occurs in both the proximal and distal segments of the nerve.
    • Conduction Failure: Permanent; there is a lasting loss of function.
    • Spontaneous Recovery: Poor to none; recovery is unlikely without surgical intervention.
    • Time of Recovery: Recovery may begin by 3 months, if at all.

Hockey Stick or London Hospital Elevator

The Hockey Stick Elevator, also known as the London Hospital Elevator, is a dental instrument used primarily in oral surgery and tooth extraction procedures. It is designed to facilitate the removal of tooth roots and other dental structures.

Design and Features

  • Blade Shape: The Hockey Stick Elevator features a straight blade that is angled relative to the shank, similar to the Cryer’s elevator. However, unlike the Cryer’s elevator, which has a triangular blade, the Hockey Stick Elevator has a straight blade with a convex surface on one side and a flat surface on the other.

  • Working Surface:

    • The flat surface of the blade is the working surface and is equipped with transverse serrations. These serrations enhance the instrument's grip and contact with the root stump, allowing for more effective leverage during extraction.
  • Appearance: The instrument resembles a hockey stick, which is how it derives its name. The distinctive shape aids in its identification and use in clinical settings.

Principles of Operation

  • Lever and Wedge Principle:
    • The Hockey Stick Elevator operates on the same principles as the Cryer’s elevator, utilizing the lever and wedge principle. This means that the instrument can be used to apply force to the tooth or root, effectively loosening it from the surrounding bone and periodontal ligament.
  • Functionality:
    • The primary function of the Hockey Stick Elevator is to elevate and luxate teeth or root fragments during extraction procedures. It can be particularly useful in cases where the tooth is impacted or has a curved root.

Management of Greenstick/Crack Fractures of the Mandible

Greenstick fractures (or crack fractures) are incomplete fractures that typically occur in children due to the flexibility of their bones. Fracture in mandible,  can often be managed conservatively, especially when there is no malocclusion (misalignment of the teeth).

Conservative Management

  • No Fixation Required:
    • For greenstick fractures without malocclusion, surgical fixation is generally not necessary.
    • Closed Reduction: The fracture can be managed through closed reduction, which involves realigning the fractured bone without surgical exposure.
  • Dietary Recommendations:
    • Patients are advised to consume soft foods and maintain adequate hydration with lots of fluids to facilitate healing and minimize discomfort during eating.

Surgical Management Options

In cases where surgical intervention is required, or for more complex fractures, the following methods can be employed:

  1. Kirschner Wire (K-wire) Fixation:

    • Indications: K-wires can be used for both dentulous (having teeth) and edentulous (without teeth) mandibles.
    • Technique: K-wires are inserted through the bone fragments to stabilize the fracture. This method provides internal fixation and helps maintain alignment during the healing process.
  2. Circumferential Wiring:

    • Indications: This technique is also applicable for both dentulous and edentulous mandibles.
    • Technique: Circumferential wiring involves wrapping wire around the mandible to stabilize the fracture. This method can provide additional support and is often used in conjunction with other fixation techniques.
  3. External Pin Fixation:

    • Indications: Primarily used for edentulous mandibles.
    • Technique: External pin fixation involves placing pins into the bone that are connected to an external frame. This method allows for stabilization of the mandible while avoiding intraoral fixation, which can be beneficial in certain clinical scenarios.

Overview of Infective Endocarditis (IE):

  • Infective endocarditis is an inflammation of the inner lining of the heart, often caused by bacterial infection.
  • Certain cardiac conditions increase the risk of developing IE, particularly during dental procedures that may introduce bacteria into the bloodstream.

High-Risk Cardiac Conditions: Antibiotic prophylaxis is recommended for patients with the following high-risk cardiac conditions:

  • Prosthetic cardiac valves
  • History of infective endocarditis
  • Cyanotic congenital heart disease
  • Surgically constructed systemic-pulmonary shunts
  • Other congenital heart defects
  • Acquired valvular dysfunction
  • Hypertrophic cardiomyopathy
  • Mitral valve prolapse with regurgitation

Moderate-Risk Cardiac Conditions:

  • Mitral valve prolapse without regurgitation
  • Previous rheumatic fever with valvular dysfunction

Negligible Risk Conditions:

  • Coronary bypass grafts
  • Physiological or functional heart murmurs

Prophylaxis Recommendations

When to Administer Prophylaxis:

  • Prophylaxis is indicated for dental procedures that involve:
    • Manipulation of gingival tissue
    • Perforation of the oral mucosa
    • Procedures that may cause bleeding

Antibiotic Regimens:

  • The standard prophylactic regimen is a single dose administered 30-60 minutes before the procedure:
    • Amoxicillin:
      • Adult dose: 2 g orally
      • Pediatric dose: 50 mg/kg orally (maximum 2 g)
    • Ampicillin:
      • Adult dose: 2 g IV/IM
      • Pediatric dose: 50 mg/kg IV/IM (maximum 2 g)
    • Clindamycin (for penicillin-allergic patients):
      • Adult dose: 600 mg orally
      • Pediatric dose: 20 mg/kg orally (maximum 600 mg)
    • Cephalexin (for penicillin-allergic patients):
      • Adult dose: 2 g orally
      • Pediatric dose: 50 mg/kg orally (maximum 2 g)

Explore by Exams