Talk to us?

- NEETMDS- courses
Oral and Maxillofacial Surgery

Surgical Considerations for the Submandibular and Parotid Glands

When performing surgery on the submandibular and parotid glands, it is crucial to be aware of the anatomical structures and nerves at risk to minimize complications. Below is an overview of the key nerves and anatomical landmarks relevant to these surgical procedures.

Major Nerves at Risk During Submandibular Gland Surgery

  1. Hypoglossal Nerve (CN XII):

    • This nerve is responsible for motor innervation to the muscles of the tongue. It lies deep to the submandibular gland and is at risk during surgical manipulation in this area.
  2. Marginal Mandibular Nerve:

    • A branch of the facial nerve (CN VII), the marginal mandibular nerve innervates the muscles of the lower lip and chin. It runs just deep to the superficial layer of the deep cervical fascia, below the platysma muscle, making it vulnerable during submandibular gland surgery.
  3. Lingual Nerve:

    • The lingual nerve provides sensory innervation to the anterior two-thirds of the tongue and carries parasympathetic fibers to the submandibular gland via the submandibular ganglion. It is located in close proximity to the submandibular gland and is at risk during dissection.

Anatomical Considerations for Parotid Gland Surgery

  • Parotid Fascia:

    • The parotid gland is encased in a capsule of parotid fascia, which provides a protective layer during surgical procedures.
  • Facial Nerve (CN VII):

    • The facial nerve is a critical structure to identify during parotid gland surgery to prevent injury. Key landmarks for locating the facial nerve include:
      • Tympanomastoid Suture Line: This is a reliable landmark for identifying the main trunk of the facial nerve, which lies just deep and medial to this suture.
      • Tragal Pointer: The nerve is located about 1 cm deep and inferior to the tragal pointer, although this landmark is less reliable.
      • Posterior Belly of the Digastric Muscle: This muscle provides a reference for the approximate depth of the facial nerve.
      • Peripheral Buccal Branches: While following these branches can help identify the nerve, this should not be the standard approach due to the risk of injury.

Submandibular Gland Anatomy

  • Location:

    • The submandibular gland is situated in the submandibular triangle of the neck, which is bordered by the mandible and the digastric muscles.
  • Mylohyoid Muscle:

    • The gland wraps around the mylohyoid muscle, which is typically retracted anteriorly during surgery to provide better exposure of the gland.
  • CN XII:

    • The hypoglossal nerve lies deep to the submandibular gland, making it important to identify and protect during surgical procedures.

Sagittal Split Osteotomy (SSO)

Sagittal split osteotomy (SSO) is a surgical procedure used to correct various mandibular deformities, including mandibular prognathism (protrusion of the mandible) and retrognathism (retraction of the mandible). It is considered one of the most versatile osteotomies for addressing discrepancies in the position of the mandible relative to the maxilla.

Overview of the Procedure

  1. Indications:

    • Mandibular Prognathism: In cases where the mandible is positioned too far forward, SSO can be used to setback the mandible, improving occlusion and facial aesthetics.
    • Mandibular Retrognathism: For patients with a retruded mandible, the procedure allows for advancement of the mandible to achieve a more balanced facial profile and functional occlusion.
  2. Surgical Technique:

    • The procedure involves making a sagittal split in the ramus and posterior body of the mandible. This is typically performed through an intraoral approach, which minimizes external scarring.
    • The osteotomy creates two segments of the mandible: the proximal segment (attached to the maxilla) and the distal segment (which can be repositioned).
    • Depending on the desired outcome, the distal segment can be either advanced or set back to achieve the desired occlusal relationship and aesthetic result.
  3. Cosmetic Considerations:

    • The intraoral approach used in SSO helps to avoid visible scarring on the face, making it a highly cosmetic procedure.
    • The broader bony contact between the osteotomized segments promotes better healing and stability, which is crucial for achieving long-term results.
  4. Healing and Recovery:

    • The procedure typically results in good healing due to the increased surface area of contact between the bone segments.
    • Postoperative care includes monitoring for complications, managing pain, and ensuring proper oral hygiene to prevent infection.

Advantages of Sagittal Split Osteotomy

  • Versatility: SSO can be used to correct a wide range of mandibular discrepancies, making it suitable for various clinical scenarios.
  • Cosmetic Outcome: The intraoral approach minimizes external scarring, enhancing the aesthetic outcome for patients.
  • Stability: The broad bony contact between the segments ensures good stability and promotes effective healing.
  • Functional Improvement: By correcting occlusal discrepancies, SSO can improve chewing function and overall oral health.

Considerations and Potential Complications

  • Nerve Injury: There is a risk of injury to the inferior alveolar nerve, which can lead to temporary or permanent numbness in the lower lip and chin.
  • Malocclusion: If not properly planned, there is a risk of postoperative malocclusion, which may require further intervention.
  • Infection: As with any surgical procedure, there is a risk of infection at the surgical site.

Radiological Signs Indicating Relationship Between Mandibular Third Molars and the Inferior Alveolar Canal

In 1960, Howe and Payton identified seven radiological signs that suggest a close relationship between the mandibular third molar (wisdom tooth) and the inferior alveolar canal (IAC). Recognizing these signs is crucial for dental practitioners, especially when planning for the extraction of impacted third molars, as they can indicate potential complications such as nerve injury. Below are the seven signs explained in detail:

1. Darkening of the Root

  • This sign appears as a radiolucent area at the root of the mandibular third molar, indicating that the root is in close proximity to the IAC.
  • Clinical Significance: Darkening suggests that the root may be in contact with or resorbing against the canal, which can increase the risk of nerve damage during extraction.

2. Deflected Root

  • This sign is characterized by a deviation or angulation of the root of the mandibular third molar.
  • Clinical Significance: A deflected root may indicate that the tooth is pushing against the IAC, suggesting a close anatomical relationship that could complicate surgical extraction.

3. Narrowing of the Root

  • This sign is observed as a reduction in the width of the root, often seen on radiographs.
  • Clinical Significance: Narrowing may indicate that the root is being resorbed or is in close contact with the IAC, which can pose a risk during extraction.

4. Interruption of the White Line(s)

  • The white line refers to the radiopaque outline of the IAC. An interruption in this line can be seen on radiographs.
  • Clinical Significance: This interruption suggests that the canal may be displaced or affected by the root of the third molar, indicating a potential risk for nerve injury.

5. Diversion of the Inferior Alveolar Canal

  • This sign is characterized by a noticeable change in the path of the IAC, which may appear to be deflected or diverted around the root of the third molar.
  • Clinical Significance: Diversion of the canal indicates that the root is in close proximity to the IAC, which can complicate surgical procedures and increase the risk of nerve damage.

6. Narrowing of the Inferior Alveolar Canal (IAC)

  •  This sign appears as a reduction in the width of the IAC on radiographs.
  • Clinical Significance: Narrowing of the canal may suggest that the root of the third molar is encroaching upon the canal, indicating a close relationship that could lead to complications during extraction.

7. Hourglass Form

  • This sign indicates a partial or complete encirclement of the IAC by the root of the mandibular third molar, resembling an hourglass shape on radiographs.
  • Clinical Significance: An hourglass form suggests that the root may be significantly impinging on the IAC, which poses a high risk for nerve injury during extraction.

Transoral Lithotomy: Procedure for Submandibular Duct Stone Removal

Transoral lithotomy is a surgical technique used to remove stones (calculi) from the submandibular duct (Wharton's duct). This procedure is typically performed under local anesthesia and is effective for addressing sialolithiasis (the presence of stones in the salivary glands).

Procedure

  1. Preoperative Preparation:

    • Radiographic Assessment: The exact location of the stone is determined using imaging studies, such as X-rays or ultrasound, to guide the surgical approach.
    • Local Anesthesia: The procedure is performed under local anesthesia to minimize discomfort for the patient.
  2. Surgical Technique:

    • Suture Placement: A suture is placed behind the stone to prevent it from moving backward during the procedure, facilitating easier access.
    • Incision: An incision is made in the mucosa of the floor of the mouth, parallel to the duct. Care is taken to avoid injury to surrounding structures, including:
      • Lingual Nerve: Responsible for sensory innervation to the tongue.
      • Submandibular Gland: The gland itself should be preserved to maintain salivary function.
  3. Blunt Dissection:

    • After making the incision, blunt dissection is performed to carefully displace the surrounding tissue and expose the duct.
  4. Identifying the Duct:

    • The submandibular duct is located, and the segment of the duct that contains the stone is identified.
  5. Stone Removal:

    • A longitudinal incision is made over the stone within the duct. The stone is then extracted using small forceps. Care is taken to ensure complete removal to prevent recurrence.
  6. Postoperative Considerations:

    • After the stone is removed, the incision may be closed with sutures, and the area is monitored for any signs of complications.

Complications

  • Bacterial Sialadenitis: If there is a secondary infection following the procedure, it can lead to bacterial sialadenitis, which is an inflammation of the salivary gland due to infection. Symptoms may include pain, swelling, and purulent discharge from the duct.

Cleft Palate and Craniofacial Anomalies

Cleft palate and other craniofacial anomalies are congenital conditions that affect the structure and function of the face and mouth. These conditions can have significant implications for a person's health, development, and quality of life. Below is a detailed overview of cleft palate, its causes, associated craniofacial anomalies, and management strategies.

Cleft Palate

A cleft palate is a congenital defect characterized by an opening or gap in the roof of the mouth (palate) that occurs when the tissue does not fully come together during fetal development. It can occur as an isolated condition or in conjunction with a cleft lip.

Types:

  1. Complete Cleft Palate: Involves a complete separation of the palate, extending from the front of the mouth to the back.
  2. Incomplete Cleft Palate: Involves a partial separation of the palate, which may affect only a portion of the roof of the mouth.

Causes:

  • Genetic Factors: Family history of cleft palate or other congenital anomalies can increase the risk.
  • Environmental Factors: Maternal factors such as smoking, alcohol consumption, certain medications, and nutritional deficiencies (e.g., folic acid) during pregnancy may contribute to the development of clefts.
  • Multifactorial Inheritance: Cleft palate often results from a combination of genetic and environmental influences.

Associated Features:

  • Cleft Lip: Often occurs alongside cleft palate, resulting in a split or opening in the upper lip.
  • Dental Anomalies: Individuals with cleft palate may experience dental issues, including missing teeth, misalignment, and malocclusion.
  • Speech and Language Delays: Difficulty with speech development is common due to the altered anatomy of the oral cavity.
  • Hearing Problems: Eustachian tube dysfunction can lead to middle ear infections and hearing loss.

Craniofacial Anomalies

Craniofacial anomalies encompass a wide range of congenital conditions that affect the skull and facial structures. Some common craniofacial anomalies include:

  1. Cleft Lip and Palate: As previously described, this is one of the most common craniofacial anomalies.

  2. Craniosynostosis: A condition where one or more of the sutures in a baby's skull close prematurely, affecting skull shape and potentially leading to increased intracranial pressure.

  3. Apert Syndrome: A genetic disorder characterized by the fusion of certain skull bones, leading to a shaped head and facial abnormalities.

  4. Treacher Collins Syndrome: A genetic condition that affects the development of facial bones and tissues, leading to underdeveloped facial features.

  5. Hemifacial Microsomia: A condition where one side of the face is underdeveloped, affecting the jaw, ear, and other facial structures.

  6. Goldenhar Syndrome: A condition characterized by facial asymmetry, ear abnormalities, and spinal defects.

Management and Treatment

Management of cleft palate and craniofacial anomalies typically involves a multidisciplinary approach, including:

  1. Surgical Intervention:

    • Cleft Palate Repair: Surgical closure of the cleft is usually performed between 6 to 18 months of age to improve feeding, speech, and appearance.
    • Cleft Lip Repair: Often performed in conjunction with or prior to palate repair, typically around 3 to 6 months of age.
    • Orthognathic Surgery: May be necessary in adolescence or adulthood to correct jaw alignment and improve function.
  2. Speech Therapy: Early intervention with speech therapy can help address speech and language delays associated with cleft palate.

  3. Dental Care: Regular dental check-ups and orthodontic treatment may be necessary to manage dental anomalies and ensure proper alignment.

  4. Hearing Assessment: Regular hearing evaluations are important, as individuals with cleft palate are at higher risk for ear infections and hearing loss.

  5. Psychosocial Support: Counseling and support groups can help individuals and families cope with the emotional and social challenges associated with craniofacial anomalies.

Coronoid Fracture

coronoid fracture is a relatively rare type of fracture that involves the coronoid process of the mandible, which is the bony projection on the upper part of the ramus of the mandible where the temporalis muscle attaches. This fracture is often associated with specific mechanisms of injury and can have implications for jaw function and treatment.

Mechanism of Injury

  • Reflex Muscular Contraction: The primary mechanism behind coronoid fractures is thought to be the result of reflex muscular contraction of the strong temporalis muscle. This can occur during traumatic events, such as:

    • Direct Trauma: A blow to the jaw or face.
    • Indirect Trauma: Situations where the jaw is forcibly closed, such as during a seizure or a strong reflex action (e.g., clenching the jaw during impact).
  • Displacement: When the temporalis muscle contracts forcefully, it can displace the fractured fragment of the coronoid process upwards towards the infratemporal fossa. This displacement can complicate the clinical picture and may affect the treatment approach.

Clinical Presentation

  • Pain and Swelling: Patients with a coronoid fracture typically present with localized pain and swelling in the region of the mandible.
  • Limited Jaw Movement: There may be restricted range of motion in the jaw, particularly in opening the mouth (trismus) due to pain and muscle spasm.
  • Palpable Defect: In some cases, a palpable defect may be felt in the area of the coronoid process.

Diagnosis

  • Clinical Examination: A thorough clinical examination is essential to assess the extent of the injury and any associated fractures.
  • Imaging Studies:
    • Panoramic Radiography: A panoramic X-ray can help visualize the mandible and identify fractures.
    • CT Scan: A computed tomography (CT) scan is often the preferred imaging modality for a more detailed assessment of the fracture, especially to evaluate displacement and any associated injuries to surrounding structures.

Treatment

  • Conservative Management: In cases where the fracture is non-displaced or minimally displaced, conservative management may be sufficient. This can include:

    • Pain Management: Use of analgesics to control pain.
    • Soft Diet: Advising a soft diet to minimize jaw movement and stress on the fracture site.
    • Physical Therapy: Gradual jaw exercises may be recommended to restore function.
  • Surgical Intervention: If the fracture is significantly displaced or if there are functional impairments, surgical intervention may be necessary. This can involve:

    • Open Reduction and Internal Fixation (ORIF): Surgical realignment of the fractured fragment and stabilization using plates and screws.
    • Bone Grafting: In cases of significant bone loss or non-union, bone grafting may be considered.

Classification of Mandibular Fractures

Mandibular fractures are common injuries that can result from various causes, including trauma, accidents, and sports injuries. Understanding the classification and common sites of mandibular fractures is essential for effective diagnosis and management. Below is a detailed overview of the classification of mandibular fractures, focusing on the common sites and patterns of fracture.

General Overview

  • Weak Points: The mandible has specific areas that are more susceptible to fractures due to their anatomical structure. The condylar neck is considered the weakest point and the most common site of mandibular fractures. Other common sites include the angle of the mandible and the region of the canine tooth.

  • Indirect Transmission of Energy: Fractures can occur due to indirect forces transmitted through the mandible, which may lead to fractures of the condyle even if the impact is not directly on that area.

Patterns of Mandibular Fractures

  1. Fracture of the Condylar Neck:

    • Description: The neck of the condyle is the most common site for mandibular fractures. This area is particularly vulnerable due to its anatomical structure and the forces applied during trauma.
    • Clinical Significance: Fractures in this area can affect the function of the temporomandibular joint (TMJ) and may lead to complications such as malocclusion or limited jaw movement.
  2. Fracture of the Angle of the Mandible:

    • Description: The angle of the mandible is the second most common site for fractures, typically occurring through the last molar tooth.
    • Clinical Significance: Fractures in this region can impact the integrity of the mandible and may lead to displacement of the fractured segments. They can also affect the function of the muscles of mastication.
  3. Fracture in the Region of the Canine Tooth:

    • Description: The canine region is another weak point in the mandible, where fractures can occur due to trauma.
    • Clinical Significance: Fractures in this area may involve the alveolar process and can affect the stability of the canine tooth, leading to potential complications in dental alignment and occlusion.

Additional Classification Systems

Mandibular fractures can also be classified based on various criteria, including:

  1. Location:

    • Symphyseal Fractures: Fractures occurring at the midline of the mandible.
    • Parasymphyseal Fractures: Fractures located just lateral to the midline.
    • Body Fractures: Fractures occurring along the body of the mandible.
    • Angle Fractures: Fractures at the angle of the mandible.
    • Condylar Fractures: Fractures involving the condylar process.
  2. Type of Fracture:

    • Simple Fractures: Fractures that do not involve the surrounding soft tissues.
    • Compound Fractures: Fractures that communicate with the oral cavity or skin, leading to potential infection.
    • Comminuted Fractures: Fractures that result in multiple fragments of bone.
  3. Displacement:

    • Non-displaced Fractures: Fractures where the bone fragments remain in alignment.
    • Displaced Fractures: Fractures where the bone fragments are misaligned, requiring surgical intervention for realignment.

Explore by Exams