Talk to us?

Oral and Maxillofacial Surgery - NEETMDS- courses
Oral and Maxillofacial Surgery

Neurogenic Shock

Neurogenic shock is a type of distributive shock that occurs due to the loss of vasomotor tone, leading to widespread vasodilation and a significant decrease in systemic vascular resistance. This condition can occur without any loss of blood volume, resulting in inadequate filling of the circulatory system despite normal blood volume. Below is a detailed overview of neurogenic shock, its causes, symptoms, and management.

Mechanism of Neurogenic Shock

  • Loss of Vasomotor Tone: Neurogenic shock is primarily caused by the disruption of sympathetic nervous system activity, which leads to a loss of vasomotor tone. This results in massive dilation of blood vessels, particularly veins, causing a significant increase in vascular capacity.
  • Decreased Systemic Vascular Resistance: The dilated blood vessels cannot effectively maintain blood pressure, leading to inadequate perfusion of vital organs, including the brain.

Causes

  • Spinal Cord Injury: Damage to the spinal cord, particularly at the cervical or upper thoracic levels, can disrupt sympathetic outflow and lead to neurogenic shock.
  • Severe Head Injury: Traumatic brain injury can also affect autonomic regulation and result in neurogenic shock.
  • Vasovagal Syncope: A common form of neurogenic shock, often triggered by emotional stress, pain, or prolonged standing, leading to a sudden drop in heart rate and blood pressure.

Symptoms

Early Signs:

  • Pale or Ashen Gray Skin: Due to peripheral vasodilation and reduced blood flow to the skin.
  • Heavy Perspiration: Increased sweating as a response to stress or pain.
  • Nausea: Gastrointestinal distress may occur.
  • Tachycardia: Increased heart rate as the body attempts to compensate for low blood pressure.
  • Feeling of Warmth: Particularly in the neck or face due to vasodilation.

Late Symptoms:

  • Coldness in Hands and Feet: Peripheral vasoconstriction may occur as the body prioritizes blood flow to vital organs.
  • Hypotension: Significantly low blood pressure due to vasodilation.
  • Bradycardia: Decreased heart rate, particularly in cases of vasovagal syncope.
  • Dizziness and Visual Disturbance: Due to decreased cerebral perfusion.
  • Papillary Dilation: As a response to low light levels in the eyes.
  • Hyperpnea: Increased respiratory rate as the body attempts to compensate for low oxygen delivery.
  • Loss of Consciousness: Resulting from critically low cerebral blood flow.

Duration of Syncope

  • Brief Duration: The duration of syncope in neurogenic shock is typically very brief. Patients often regain consciousness almost immediately upon being placed in a supine position.
  • Supine Positioning: This position is crucial as it helps increase venous return to the heart and improves cerebral perfusion, aiding in recovery.

Management

  1. Positioning: The first and most important step in managing neurogenic shock is to place the patient in a supine position. This helps facilitate blood flow to the brain.

  2. Fluid Resuscitation: While neurogenic shock does not typically involve blood loss, intravenous fluids may be administered to help restore vascular volume and improve blood pressure.

  3. Vasopressors: In cases where hypotension persists despite fluid resuscitation, vasopressor medications may be used to constrict blood vessels and increase blood pressure.

  4. Monitoring: Continuous monitoring of vital signs, including blood pressure, heart rate, and oxygen saturation, is essential to assess the patient's response to treatment.

  5. Addressing Underlying Causes: If neurogenic shock is due to a specific cause, such as spinal cord injury or vasovagal syncope, appropriate interventions should be initiated to address the underlying issue.

Local Anesthetic (LA) Toxicity and Dosing Guidelines

Local anesthetics (LAs) are widely used in various medical and dental procedures to provide pain relief. However, it is essential to understand their effects on the cardiovascular system, potential toxicity, and appropriate dosing guidelines to ensure patient safety.

Sensitivity of the Cardiovascular System

  • The cardiovascular system is generally less sensitive to local anesthetics compared to the central nervous system (CNS). However, toxicity can still lead to significant cardiovascular effects.

Effects of Local Anesthetic Toxicity

  1. Mild Toxicity (5-10 μg/ml):

    • Myocardial Depression: Decreased contractility of the heart muscle.
    • Decreased Cardiac Output: Reduced efficiency of the heart in pumping blood.
    • Peripheral Vasodilation: Widening of blood vessels, leading to decreased blood pressure.
  2. Severe Toxicity (Above 10 μg/ml):

    • Intensification of Effects: The cardiovascular effects become more pronounced, including:
      • Massive Vasodilation: Significant drop in blood pressure.
      • Reduction in Myocardial Contractility: Further decrease in the heart's ability to contract effectively.
      • Severe Bradycardia: Abnormally slow heart rate.
      • Possible Cardiac Arrest: Life-threatening condition requiring immediate intervention.

Dosing Guidelines for Local Anesthetics

  1. With Vasoconstrictor:

    • Maximum Recommended Dose:
      • 7 mg/kg body weight
      • Should not exceed 500 mg total.
  2. Without Vasoconstrictor:

    • Maximum Recommended Dose:
      • 4 mg/kg body weight
      • Should not exceed 300 mg total.

Special Considerations for Dosing

  • The maximum calculated drug dose should always be decreased in certain populations to minimize the risk of toxicity:
    • Medically Compromised Patients: Individuals with underlying health conditions that may affect drug metabolism or cardiovascular function.
    • Debilitated Patients: Those who are physically weakened or have reduced physiological reserve.
    • Elderly Persons: Older adults may have altered pharmacokinetics and increased sensitivity to medications.

Surgical Gut (Catgut)

Surgical gut, commonly known as catgut, is a type of absorbable suture material derived from the intestines of animals, primarily sheep and cattle. It has been widely used in surgical procedures due to its unique properties, although it has certain limitations. Below is a detailed overview of surgical gut, including its composition, properties, mechanisms of absorption, and clinical applications.

Composition and Preparation

  • Source: Surgical gut is prepared from:

    • Submucosa of Sheep Small Intestine: This layer is rich in collagen, which is essential for the strength and absorbability of the suture.
    • Serosal Layer of Cattle Small Intestine: This layer also provides collagen and is used in the production of surgical gut.
  • Collagen Content: The primary component of surgical gut is collagen, which is treated with formaldehyde to enhance its properties. This treatment helps stabilize the collagen structure and prolongs the suture's strength.

  • Suture Characteristics:

    • Multifilament Structure: Surgical gut is a capillary multifilament suture, meaning it consists of multiple strands that can absorb fluids, which can be beneficial in certain surgical contexts.
    • Smooth Surface: The sutures are machine-ground and polished to yield a relatively smooth surface, resembling that of monofilament sutures.

Sterilization

  • Sterilization Methods:

    • Ionizing Radiation: Surgical gut is typically sterilized using ionizing radiation, which effectively kills pathogens without denaturing the protein structure of the collagen.
    • Ethylene Oxide: This method can also be used for sterilization, and it prolongs the absorption time of the suture, making it suitable for specific applications.
  • Limitations of Autoclaving: Autoclaving is not suitable for surgical gut because it denatures the protein, leading to a significant loss of tensile strength.

Mechanism of Absorption

The absorption of surgical gut after implantation occurs through a twofold mechanism primarily involving macrophages:

  1. Molecular Bond Cleavage:

    • Acid hydrolytic and collagenolytic activities cleave the molecular bonds in the collagen structure of the suture.
  2. Digestion and Absorption:

    • Proteolytic enzymes further digest the collagen, leading to the gradual absorption of the suture material.
  • Foreign Body Reaction: Due to its collagenous composition, surgical gut stimulates a significant foreign body reaction in the implanted tissue, which can lead to inflammation.

Rate of Absorption and Loss of Tensile Strength

  • Variability: The rate of absorption and loss of tensile strength varies depending on the implantation site and the surrounding tissue environment.

  • Premature Absorption: Factors that can lead to premature absorption include:

    • Exposure to gastric secretions.
    • Presence of infection.
    • Highly vascularized tissues.
    • Conditions in protein-depleted patients.
  • Strength Loss Timeline:

    • Medium chromic gut loses about 33% of its original strength after 7 days of implantation and about 67% after 28 days.

Types of Surgical Gut

  1. Plain Gut:

    • Characteristics: Produces a severe tissue reaction and loses tensile strength rapidly, making it less useful in surgical applications.
    • Applications: Limited due to its inflammatory response and quick absorption.
  2. Chromic Gut:

    • Treatment: Treated with chromium salts to increase tensile strength and resistance to digestion while decreasing tissue reactivity.
    • Advantages: Provides a more controlled absorption rate and is more suitable for surgical use compared to plain gut.

Handling Characteristics

  • Good Handling: Surgical gut generally exhibits good handling characteristics, allowing for easy manipulation during surgical procedures.
  • Weakness When Wet: It swells and weakens when wet, which can affect knot security and overall performance during surgery.

Disadvantages

  • Intense Inflammatory Reaction: Surgical gut can provoke a significant inflammatory response, which may complicate healing.
  • Variability in Strength Loss: The unpredictable rate of loss of tensile strength can be a concern in surgical applications.
  • Capillarity: The multifilament structure can absorb fluids, which may lead to increased tissue reaction and complications.
  • Sensitivity Reactions: Some patients, particularly cats, may experience sensitivity reactions to surgical gut.

Clinical Applications

  • Use in Surgery: Surgical gut is used in various surgical procedures, particularly in soft tissue closures where absorbable sutures are preferred.
  • Adhesion Formation: The use of surgical gut is generally unwarranted in situations where adhesion formation is desired due to its inflammatory properties.

Airway Management in Medical Emergencies: Tracheostomy and Cricothyrotomy

 

1. Establishing a Patent Airway

  • Immediate Goal: The primary objective in any emergency involving airway obstruction is to ensure that the patient has a clear and patent airway to facilitate breathing.
  • Procedures Available: Various techniques exist to achieve this, ranging from nonsurgical methods to surgical interventions.

2. Surgical Interventions

A. Tracheostomy

  • A tracheostomy is a surgical procedure that involves creating an opening in the trachea (windpipe) through the neck to establish an airway.
  • Indications:
    • Prolonged mechanical ventilation.
    • Severe upper airway obstruction (e.g., due to tumors, trauma, or swelling).
    • Need for airway protection in patients with impaired consciousness or neuromuscular disorders.
  • Procedure:
    • An incision is made in the skin over the trachea, A tracheostomy incision is made between the second and third tracheal rings, which is below the larynxThe incision is usually 2–3 cm long and can be vertical or horizontaland the trachea is then opened to insert a tracheostomy tube.
    • This procedure requires considerable knowledge of anatomy and technical skill to perform safely and effectively.

B. Cricothyrotomy

  • Definition: A cricothyrotomy is a surgical procedure that involves making an incision through the skin over the cricothyroid membrane (located between the thyroid and cricoid cartilages) to establish an airway.
  • Indications:
    • Emergency situations where rapid access to the airway is required, especially when intubation is not possible.
    • Situations where facial or neck trauma makes traditional intubation difficult.
  • Procedure:
    • A vertical incision is made over the cricothyroid membrane, and a tube is inserted directly into the trachea.
    • This procedure is typically quicker and easier to perform than a tracheostomy, making it suitable for emergency situations.

3. Nonsurgical Techniques for Airway Management

A. Abdominal Thrust (Heimlich Maneuver)

  •  The Heimlich maneuver is a lifesaving technique used to relieve choking caused by a foreign body obstructing the airway.
  • Technique:
    • The rescuer stands behind the patient and wraps their arms around the patient's waist.
    • A fist is placed just above the navel, and quick, inward and upward thrusts are applied to create pressure in the abdomen, which can help expel the foreign object.
  • Indications: This technique is the first-line approach for conscious patients experiencing airway obstruction.

B. Back Blows and Chest Thrusts

  • Back Blows:
    • The rescuer delivers firm blows to the back between the shoulder blades using the heel of the hand. This can help dislodge an object obstructing the airway.
  • Chest Thrusts:
    • For patients who are obese or pregnant, chest thrusts may be more effective. The rescuer stands behind the patient and performs thrusts to the chest, similar to the Heimlich maneuver.

Indications for PDL Injection

  1. Primary Indications:

    • Localized Anesthesia: Effective for one or two mandibular teeth in a quadrant.
    • Isolated Teeth Treatment: Useful for treating isolated teeth in both mandibular quadrants, avoiding the need for bilateral inferior alveolar nerve blocks.
    • Pediatric Dentistry: Minimizes the risk of self-inflicted injuries due to residual soft tissue anesthesia.
    • Contraindications for Nerve Blocks: Safe alternative for patients with conditions like hemophilia where nerve blocks may pose risks.
    • Diagnostic Aid: Can assist in the localization of mandibular pain.
  2. Advantages:

    • Reduced risk of complications associated with nerve blocks.
    • Faster onset of anesthesia for localized procedures.

Contraindications and Complications of PDL Injection

  1. Contraindications:

    • Infection or Severe Inflammation: Risks associated with injecting into infected or inflamed tissues.
    • Presence of Primary Teeth: Discuss the findings by Brannstrom and associates regarding enamel hypoplasia or hypomineralization in permanent teeth following PDL injections in primary dentition.
  2. Complications:

    • Potential for discomfort or pain at the injection site.
    • Risk of damage to surrounding structures if not administered correctly.
    • Discussion of the rare but serious complications associated with PDL injections.
  3. Management of Complications:

    • Strategies for minimizing risks and managing complications if they arise.

WAR Lines in the Assessment of Impacted Mandibular Third Molars

The WAR lines, as described by George Winter, are a set of three imaginary lines used in radiographic analysis to determine the position and depth of impacted mandibular third molars (wisdom teeth). These lines help clinicians assess the orientation and surgical approach needed for extraction. The three lines are color-coded: white, amber, and red, each serving a specific purpose in evaluating the impacted tooth.

1. White Line

  • Description: The white line is drawn along the occlusal surfaces of the erupted mandibular molars and extended posteriorly over the third molar region.
  • Purpose: This line helps visualize the axial inclination of the impacted third molar.
  • Clinical Significance:
    • If the occlusal surface of the vertically impacted third molar is parallel to the white line, it indicates that the tooth is positioned in a vertical orientation.
    • Deviations from this line can suggest different angulations of impaction (e.g., mesioangular, distoangular).

2. Amber Line

  • Description: The amber line is drawn from the surface of the bone on the distal aspect of the third molar to the crest of the interdental septum between the first and second mandibular molars.
  • Purpose: This line represents the margin of the alveolar bone covering the third molar.
  • Clinical Significance:
    • The amber line indicates the amount of bone that will need to be removed to access the impacted tooth.
    • After removing the soft tissue, only the portion of the impacted tooth structure that lies above the amber line will be visible, guiding the surgeon in determining the extent of bone removal required for extraction.

3. Red Line

  • Description: The red line is an imaginary line drawn perpendicular to the amber line, extending to an imaginary point of application of the elevator, typically at the cementoenamel junction (CEJ) on the mesial surface of the impacted tooth.
  • Exceptions: In cases of distoangular impaction, the point of application may be at the CEJ on the distal aspect of the tooth.
  • Purpose: The length of the red line indicates the depth of the impacted tooth.
  • Clinical Significance:
    • This measurement helps the surgeon understand how deep the impacted tooth is positioned relative to the surrounding bone and soft tissue.
    • It assists in planning the surgical approach and determining the necessary instruments for extraction.

Le Fort I Fracture

  • A horizontal fracture that separates the maxilla from the nasal and zygomatic bones. It is also known as a "floating maxilla."

Signs and Symptoms:

  1. Bilateral Periorbital Edema and Ecchymosis: Swelling and bruising around the eyes (Raccoon eyes).
  2. Disturbed Occlusion: Malocclusion due to displacement of the maxilla.
  3. Mobility of the Maxilla: The maxilla may move independently of the rest of the facial skeleton.
  4. Nasal Bleeding: Possible epistaxis due to injury to the nasal mucosa.
  5. CSF Rhinorrhea: If there is a breach in the dura mater, cerebrospinal fluid may leak from the nose.

Le Fort II Fracture

  • A pyramidal fracture that involves the maxilla, nasal bones, and the zygomatic bones. It is characterized by a fracture line that extends from the nasal bridge to the maxilla and zygomatic arch.

Signs and Symptoms:

  1. Bilateral Periorbital Edema and Ecchymosis: Swelling and bruising around the eyes (Raccoon eyes).
  2. Diplopia: Double vision due to involvement of the orbital floor and potential muscle entrapment.
  3. Enophthalmos: Posterior displacement of the eyeball within the orbit.
  4. Restriction of Globe Movements: Limited eye movement due to muscle entrapment.
  5. Disturbed Occlusion: Malocclusion due to displacement of the maxilla.
  6. Nasal Bleeding: Possible epistaxis.
  7. CSF Rhinorrhea: If the dura is torn, cerebrospinal fluid may leak from the nose.

Le Fort III Fracture

  • A craniofacial disjunction fracture that involves the maxilla, zygomatic bones, and the orbits. It is characterized by a fracture line that separates the entire midface from the skull base.

Signs and Symptoms:

  1. Bilateral Periorbital Edema and Ecchymosis: Swelling and bruising around the eyes (Raccoon eyes).
  2. Orbital Dystopia: Abnormal positioning of the orbits, often with an antimongoloid slant.
  3. Diplopia: Double vision due to muscle entrapment or damage.
  4. Enophthalmos: Posterior displacement of the eyeball.
  5. Restriction of Globe Movements: Limited eye movement due to muscle entrapment.
  6. Disturbed Occlusion: Significant malocclusion due to extensive displacement of facial structures.
  7. CSF Rhinorrhea: If there is a breach in the dura mater, cerebrospinal fluid may leak from the nose or ears (CSF otorrhea).
  8. Bleeding Over Mastoid Process (Battle’s Sign): Bruising behind the ear may indicate a skull base fracture.

Explore by Exams