NEET MDS Lessons
Conservative Dentistry
Instrument formula
First number : It indicates width of blade (or of primary cutting edge) in 1/10 th of a millimeter (i.e. no. 10 means 1 mm blade width).
Second number :
1) It indicates primary cutting edge angle.
2) It is measured form a line parallel to the long axis of the instrument handle in clockwise centigrade. Expressed as per cent of 360° (e.g. 85 means 85% of 360 = 306°).
3)The instrument is positioned so that this number always exceeds 50. If the edge is locally perpendicular to the blade, then this number is normally omitted resulting in a three number code.
Third number : It indicates blade length in millimeter.
Fourth number :
1)Indicates blade angle relative to long axis of handle in clockwise centigrade.
2) The instrument is positioned so that this number. is always 50 or less. It becomes third number in a three number code when
2nd number is omitted.
Gingival Seat in Class II Restorations
The gingival seat is a critical component of Class II restorations, particularly in ensuring proper adaptation and retention of the restorative material. This guide outlines the key considerations for the gingival seat in Class II restorations, including its extension, clearance, beveling, and wall placement.
1. Extension of the Gingival Seat
A. Apical Extension
- Apical to Proximal Contact or Caries: The gingival seat should extend apically to the proximal contact point or the extent of caries, whichever is greater. This ensures that all carious tissue is removed and that the restoration has adequate retention.
2. Clearance from Adjacent Tooth
A. Clearance Requirement
- Adjacent Tooth Clearance: The gingival seat should clear the adjacent tooth by approximately 0.5 mm. This clearance is essential to prevent damage to the adjacent tooth and to allow for proper adaptation of the restorative material.
3. Beveling of the Gingival Margin
A. Bevel Angles
-
Amalgam Restorations: For amalgam restorations, the gingival margin is typically beveled at an angle of 15-20 degrees. This bevel helps to improve the adaptation of the amalgam and reduce the risk of marginal failure.
-
Cast Restorations: For cast restorations, the gingival margin is beveled at a steeper angle of 30-40 degrees. This angle enhances the strength of the margin and provides better retention for the cast material.
B. Contraindications for Beveling
- Root Surface Location: If the gingival seat is located on the root surface, beveling is contraindicated. This is to maintain the integrity of the root surface and avoid compromising the periodontal attachment.
4. Wall Placement
A. Facial and Lingual Walls
- Extension of Walls: The facial and lingual walls of the proximal box should be extended such that they clear the adjacent tooth by 0.2-0.3 mm. This clearance helps to ensure that the restoration does not impinge on the adjacent tooth and allows for proper contouring of the restoration.
B. Embrasure Placement
- Placement in Embrasures: The facial and lingual walls should be positioned in their respective embrasures. This placement helps to optimize the aesthetics and function of the restoration while providing adequate support.
Indirect Porcelain Veneers: Etched Feldspathic Veneers
Indirect porcelain veneers, particularly etched porcelain veneers, are a popular choice in cosmetic dentistry for enhancing the aesthetics of teeth. This lecture will focus on the characteristics, bonding mechanisms, and clinical considerations associated with etched feldspathic veneers.
- Indirect Porcelain Veneers: These are thin shells of porcelain that are custom-made in a dental laboratory and then bonded to the facial surface of the teeth. They are used to improve the appearance of teeth that are discolored, misaligned, or have surface irregularities.
Types of Porcelain Veneers
- Feldspathic Porcelain: The most frequently used type of porcelain for veneers is feldspathic porcelain. This material is known for its excellent aesthetic properties, including translucency and color matching with natural teeth.
Hydrofluoric Acid Etching
- Etching with Hydrofluoric Acid: Feldspathic porcelain veneers are typically etched with hydrofluoric acid before bonding. This process creates a roughened surface on the porcelain, which enhances the bonding area.
- Surface Characteristics: The etching process increases the surface area and creates micro-retentive features that improve the mechanical interlocking between the porcelain and the resin bonding agent.
Resin-Bonding Mediums
- High Bond Strengths: The etched porcelain can achieve high bond strengths to the etched enamel through the use of resin-bonding agents. These agents are designed to penetrate the micro-retentive surface created by the etching process.
- Bonding Process:
- Surface Preparation: The porcelain surface is etched with hydrofluoric acid, followed by thorough rinsing and drying.
- Application of Bonding Agent: A resin bonding agent is applied to the etched porcelain surface. This agent may contain components that enhance adhesion to both the porcelain and the tooth structure.
- Curing: The bonding agent is cured, either chemically or with a light-curing process, to achieve a strong bond between the porcelain veneer and the tooth.
Importance of Enamel Etching
- Etched Enamel: The enamel surface of the tooth is also typically etched with phosphoric acid to enhance the bond between the resin and the tooth structure. This dual etching process (both porcelain and enamel) is crucial for achieving optimal bond strength.
Clinical Considerations
A. Indications for Use
- Aesthetic Enhancements: Indirect porcelain veneers are indicated for patients seeking aesthetic improvements, such as correcting discoloration, closing gaps, or altering the shape of teeth.
- Minimal Tooth Preparation: They require minimal tooth preparation compared to crowns, preserving more of the natural tooth structure.
B. Contraindications
- Severe Tooth Wear: Patients with significant tooth wear or structural damage may require alternative restorative options.
- Bruxism: Patients with bruxism (teeth grinding) may not be ideal candidates for porcelain veneers due to the potential for fracture.
C. Longevity and Maintenance
- Durability: When properly bonded and maintained, porcelain veneers can last many years. Regular dental check-ups are essential to monitor the condition of the veneers and surrounding tooth structure.
- Oral Hygiene: Good oral hygiene practices are crucial to prevent caries and periodontal disease, which can compromise the longevity of the veneers.
Onlay Preparation
Onlay preparations are a type of indirect restoration used to restore teeth that have significant loss of structure but still retain enough healthy tooth structure to support a restoration. Onlays are designed to cover one or more cusps of a tooth and are often used when a full crown is not necessary.
1. Definition of Onlay
A. Onlay
- An onlay is a restoration that is fabricated using an indirect procedure, covering one or more cusps of a tooth. It is designed to restore the tooth's function and aesthetics while preserving as much healthy tooth structure as possible.
2. Indications for Onlay Preparation
- Extensive Caries: When a tooth has significant decay that cannot be effectively treated with a filling but does not require a full crown.
- Fractured Teeth: For teeth that have fractured cusps or significant structural loss.
- Strengthening: To reinforce a tooth that has been weakened by previous restorations or caries.
3. Onlay Preparation Procedure
A. Initial Assessment
- Clinical Examination: Assess the extent of caries or damage to determine if an onlay is appropriate.
- Radiographic Evaluation: Use X-rays to evaluate the tooth structure and surrounding tissues.
B. Tooth Preparation
-
Burs Used:
- Commonly used burs include No. 169 L for initial cavity preparation and No. 271 for refining the preparation.
-
Cavity Preparation:
- Occlusal Entry: The initial occlusal entry should be approximately 1.5 mm deep.
- Divergence of Walls: All cavity walls should
diverge occlusally by 2-5 degrees:
- 2 degrees: For short vertical walls.
- 5 degrees: For long vertical walls.
-
Proximal Box Preparation:
- The proximal box margins should clear adjacent teeth by 0.2-0.5 mm, with 0.5 ± 0.2 mm being ideal.
C. Bevels and Flares
-
Facial and Lingual Flares:
- Primary and secondary flares should be created on the facial and lingual proximal walls to form the walls in two planes.
- The secondary flare widens the proximal box, allowing for better access and cleaning.
-
Gingival Bevels:
- Should be 0.5-1 mm wide and blend with the secondary flare, resulting in a marginal metal angle of 30 degrees.
-
Occlusal Bevels:
- Present on the cavosurface margins of the cavity on the occlusal surface, approximately 1/4th the depth of the respective wall, resulting in a marginal metal angle of 40 degrees.
4. Dimensions for Onlay Preparation
A. Depth of Preparation
- Occlusal Depth: Approximately 1.5 mm to ensure adequate thickness of the restorative material.
- Proximal Box Depth: Should be sufficient to accommodate the onlay while maintaining the integrity of the tooth structure.
B. Marginal Angles
- Facial and Lingual Margins: Should be prepared with a 30-degree angle for burnishability and strength.
- Enamel Margins: Ideally, the enamel margins should be blunted to a 140-degree angle to enhance strength.
C. Cusp Reduction
- Cusp Coverage: Cusp reduction is indicated when more than 1/2 of a cusp is involved, and mandatory when 2/3 or more is involved.
- Uniform Metal Thickness: The reduction must provide for a uniform metal thickness of approximately 1.5 mm over the reduced cusps.
- Facial Cusp Reduction: For maxillary premolars and first molars, the reduction of the facial cusp should be 0.75-1 mm for esthetic reasons.
D. Reverse Bevel
- Definition: A bevel on the margins of the reduced cusp, extending beyond any occlusal contact with opposing teeth, resulting in a marginal metal angle of 30 degrees.
5. Considerations for Onlay Preparation
- Retention and Resistance: The preparation should be designed to maximize retention and resistance form, which may include the use of proximal retentive grooves and collar features.
- Aesthetic Considerations: The preparation should account for the esthetic requirements, especially in anterior teeth or visible areas.
- Material Selection: The choice of material (e.g., gold, porcelain, composite) will influence the preparation design and dimensions.
Amalgam Bonding Agents
Amalgam bonding agents can be classified into several categories based on their composition and mechanism of action:
A. Adhesive Systems
- Total-Etch Systems: These systems involve etching both enamel and dentin with phosphoric acid to create a rough surface that enhances mechanical retention. After etching, a bonding agent is applied to the prepared surface before the amalgam is placed.
- Self-Etch Systems: These systems combine etching and bonding in one step, using acidic monomers that partially demineralize the tooth surface while simultaneously promoting bonding. They are less technique-sensitive than total-etch systems.
B. Glass Ionomer Cements
- Glass ionomer cements can be used as a base or liner under amalgam restorations. They bond chemically to both enamel and dentin, providing a good seal and some degree of fluoride release, which can help in caries prevention.
C. Resin-Modified Glass Ionomers
- These materials combine the properties of glass ionomer cements with added resins to improve their mechanical properties and bonding capabilities. They can be used as a liner or base under amalgam restorations.
Mechanism of Action
A. Mechanical Retention
- Amalgam bonding agents create a roughened surface on the tooth structure, which increases the surface area for mechanical interlocking between the amalgam and the tooth.
B. Chemical Bonding
- Some bonding agents form chemical bonds with the tooth structure, particularly with dentin. This chemical interaction can enhance the overall retention of the amalgam restoration.
C. Sealing the Interface
- By sealing the interface between the amalgam and the tooth, bonding agents help prevent microleakage, which can lead to secondary caries and postoperative sensitivity.
Applications of Amalgam Bonding Agents
A. Sealing Tooth Preparations
- Bonding agents are used to seal the cavity preparation before the placement of amalgam, reducing the risk of microleakage and enhancing the longevity of the restoration.
B. Bonding New to Old Amalgam
- When repairing or replacing an existing amalgam restoration, bonding agents can be used to bond new amalgam to the old amalgam, improving the overall integrity of the restoration.
C. Repairing Marginal Defects
- Bonding agents can be applied to repair marginal defects in amalgam restorations, helping to restore the seal and prevent further deterioration.
Clinical Considerations
A. Technique Sensitivity
- The effectiveness of amalgam bonding agents can be influenced by the technique used during application. Proper surface preparation, including cleaning and drying the tooth structure, is essential for optimal bonding.
B. Moisture Control
- Maintaining a dry field during the application of bonding agents is critical. Moisture contamination can compromise the bond strength and lead to restoration failure.
C. Material Compatibility
- It is important to ensure compatibility between the bonding agent and the amalgam used. Some bonding agents may not be suitable for all types of amalgam, so clinicians should follow manufacturer recommendations.
D. Longevity and Performance
- While amalgam bonding agents can enhance the performance of amalgam restorations, their long-term effectiveness can vary. Regular monitoring of restorations is essential to identify any signs of failure or degradation.
Light-Cure Composites
Light-cure composites are resin-based materials that harden when exposed to specific wavelengths of light. They are widely used in dental restorations due to their aesthetic properties, ease of use, and ability to bond to tooth structure.
Key Components:
- Diketone Photoinitiator: The primary photoinitiator used in light-cure composites is camphoroquinone. This compound plays a crucial role in the polymerization process.
- Visible Light Spectrum: The curing process is activated by blue light, typically in the range of 400-500 nm.
2. Curing Lamps: Halogen Bulbs and QTH Lamps
Halogen Bulbs
- Efficiency: Halogen bulbs maintain a constant blue light efficiency for approximately 100 hours under normal use. This consistency is vital for reliable curing of dental composites.
- Step Curing: Halogen lamps allow for a technique known as step curing, where the composite is first cured at a lower energy level and then stepped up to higher energy levels. This method can enhance the properties of the cured material.
Quartz Tungsten Halogen (QTH) Curing Lamps
- Irradiance Requirements: To adequately cure a 2 mm thick specimen of resin-based composite, an irradiance value of at least 300 mW/cm² to 400 mW/cm² is necessary. This ensures that the light penetrates the composite effectively.
- Micro-filled vs. Hybrid Composites: Micro-filled composites require twice the irradiance value compared to hybrid composites. This is due to their unique composition and light transmission properties.
3. Mechanism of Visible Light Curing
The curing process involves several key steps:
Photoinitiation
- Absorption of Light: When camphoroquinone absorbs blue light in the 400-500 nm range, it becomes excited and forms free radicals.
- Free Radical Formation: These free radicals are essential for initiating the polymerization process, leading to the hardening of the composite material.
Polymerization
- Chain Reaction: The free radicals generated initiate a chain reaction that links monomers together, forming a solid polymer network.
- Maximum Absorption: The maximum absorption wavelength of camphoroquinone is at 468 nm, which is optimal for effective curing.
4. Practical Considerations in Curing
Curing Depth
- The depth of cure is influenced by the type of composite used, the thickness of the layer, and the irradiance of the light source. It is crucial to ensure that the light penetrates adequately to achieve a complete cure.
Operator Technique
- Proper technique in positioning the curing light and ensuring adequate exposure time is essential for achieving optimal results. Inadequate curing can lead to compromised mechanical properties and increased susceptibility to wear and staining.
Nursing Bottle Caries
Nursing bottle caries, also known as early childhood caries (ECC), is a significant dental issue that affects infants and young children. Understanding the etiological agents involved in this condition is crucial for prevention and management. .
1. Pathogenic Microorganism
A. Streptococcus mutans
- Role: Streptococcus mutans is the primary microorganism responsible for the development of nursing bottle caries. It colonizes the teeth after they erupt into the oral cavity.
- Transmission: This bacterium is typically transmitted to the infant’s mouth from the mother, often through saliva.
- Virulence Factors:
- Colonization: It effectively adheres to tooth surfaces, establishing a foothold for caries development.
- Acid Production: S. mutans produces large amounts of acid as a byproduct of carbohydrate fermentation, leading to demineralization of tooth enamel.
- Extracellular Polysaccharides: It synthesizes significant quantities of extracellular polysaccharides, which promote plaque formation and enhance bacterial adherence to teeth.
2. Substrate (Fermentable Carbohydrates)
A. Sources of Fermentable Carbohydrates
- Fermentable carbohydrates are utilized by S. mutans to form
dextrans, which facilitate bacterial adhesion to tooth surfaces and
contribute to acid production. Common sources include:
- Bovine Milk or Milk Formulas: Often high in lactose, which can be fermented by bacteria.
- Human Milk: Breastfeeding on demand can expose teeth to sugars.
- Fruit Juices and Sweet Liquids: These are often high in sugars and can contribute to caries.
- Sweet Syrups: Such as those found in vitamin preparations.
- Pacifiers Dipped in Sugary Solutions: This practice can introduce sugars directly to the oral cavity.
- Chocolates and Other Sweets: These can provide a continuous source of fermentable carbohydrates.
3. Host Factors
A. Tooth Structure
- Host for Microorganisms: The tooth itself serves as the host for S. mutans and other cariogenic bacteria.
- Susceptibility Factors:
- Hypomineralization or Hypoplasia: Defects in enamel development can increase susceptibility to caries.
- Thin Enamel and Developmental Grooves: These anatomical features can create areas that are more prone to plaque accumulation and caries.
4. Time
A. Duration of Exposure
- Sleeping with a Bottle: The longer a child sleeps with
a bottle in their mouth, the higher the risk of developing caries. This is
due to:
- Decreased Salivary Flow: Saliva plays a crucial role in neutralizing acids and washing away food particles.
- Prolonged Carbohydrate Accumulation: The swallowing reflex is diminished during sleep, allowing carbohydrates to remain in the mouth longer.
5. Other Predisposing Factors
- Parental Overindulgence: Excessive use of sugary foods and drinks can increase caries risk.
- Sleep Patterns: Children who sleep less may have increased exposure to cariogenic factors.
- Malnutrition: Nutritional deficiencies can affect oral health and increase susceptibility to caries.
- Crowded Living Conditions: These may limit access to dental care and hygiene practices.
- Decreased Salivary Function: Conditions such as iron deficiency and exposure to lead can impair salivary function, increasing caries susceptibility.
Clinical Features of Nursing Bottle Caries
- Intraoral Decay Pattern: The decay pattern associated with nursing bottle caries is characteristic and pathognomonic, often involving the maxillary incisors and molars.
- Progression of Lesions: Lesions typically progress rapidly, leading to extensive decay if not addressed promptly.
Management of Nursing Bottle Caries
First Visit
- Lesion Management: Excavation and restoration of carious lesions.
- Abscess Drainage: If present, abscesses should be drained.
- Radiographs: Obtain necessary imaging to assess the extent of caries.
- Diet Chart: Provide a diet chart for parents to record the child's diet for one week.
- Parent Counseling: Educate parents on oral hygiene and dietary practices.
- Topical Fluoride: Administer topical fluoride to strengthen enamel.
Second Visit
- Diet Analysis: Review the diet chart with the parents.
- Sugar Control: Identify and isolate sugar sources in the diet and provide instructions to control sugar exposure.
- Caries Activity Tests: Conduct tests to assess the activity of carious lesions.
Third Visit
- Endodontic Treatment: If necessary, perform root canal treatment on affected teeth.
- Extractions: Remove any non-restorable teeth, followed by space maintenance if needed.
- Crowns: Place crowns on teeth that require restoration.
- Recall Schedule: Schedule follow-up visits every three months to monitor progress and maintain oral health.