NEET MDS Lessons
Conservative Dentistry
Pin size
In general, increase in diameter of pin offers more retention but large
sized pins can result in more stresses in dentin. Pins are available in four
color coded sizes:
Name |
Pin diameter |
Color code |
·
Minuta |
0.38 mm |
Pink |
·
Minikin |
0.48mm |
Red |
·
Minim |
0.61 mm |
Silver |
·
Regular |
0.78 mm |
Gold
|
Selection of pin size depends upon the following factors:
·
Amount of dentin present
·
Amount of retention required
For most posterior restorations, Minikin size of pins is used because
they provide maximum retention without causing crazing in dentin.
A. Retention vs. Stress
- Retention: Generally, an increase in the diameter of the pin offers more retention for the restoration.
- Stress: However, larger pins can result in increased stresses in the dentin, which may lead to complications such as crazing or cracking of the tooth structure.
2. Factors Influencing Pin Size Selection
The selection of pin size depends on several factors:
A. Amount of Dentin Present
- Assessment: The amount of remaining dentin is a critical factor in determining the appropriate pin size. More dentin allows for the use of larger pins, while less dentin may necessitate smaller pins to avoid excessive stress.
B. Amount of Retention Required
- Retention Needs: The specific retention requirements of the restoration will also influence pin size selection. In cases where maximum retention is needed, larger pins may be considered, provided that sufficient dentin is available to accommodate them without causing damage.
3. Recommended Pin Size for Posterior Restorations
For most posterior restorations, the Minikin size pin (0.48 mm, color-coded red) is commonly used. This size provides a balance between adequate retention and minimizing the risk of causing crazing in the dentin.
Ariston pHc Alkaline Glass Restorative
Ariston pHc is a notable dental restorative material developed by Ivoclar Vivadent in 1990. This innovative material is designed to provide both restorative and preventive benefits, particularly in the management of dental caries.
1. Introduction
- Manufacturer: Ivoclar Vivadent (Liechtenstein)
- Year of Introduction: 1990
2. Key Features
A. Ion Release Mechanism
- Fluoride, Hydroxide, and Calcium Ions: Ariston pHc releases fluoride, hydroxide, and calcium ions when the pH within the restoration falls to critical levels. This release occurs in response to acidic conditions that can lead to enamel and dentin demineralization.
B. Acid Neutralization
- Counteracting Decalcification: The ions released by Ariston pHc help neutralize acids in the oral environment, effectively counteracting the decalcification of both enamel and dentin. This property is particularly beneficial in preventing further carious activity around the restoration.
3. Material Characteristics
A. Light-Activated
- Curing Method: Ariston pHc is a light-activated material, allowing for controlled curing and setting. This feature enhances the ease of use and application in clinical settings.
B. Bulk Thickness
- Curing Depth: The material can be cured in bulk thicknesses of up to 4 mm, making it suitable for various cavity preparations, including larger restorations.
4. Indications for Use
A. Recommended Applications
- Class I and II Lesions: Ariston pHc is recommended for use in Class I and II lesions in both deciduous (primary) and permanent teeth. Its properties make it particularly effective in managing carious lesions in children and adults.
5. Clinical Benefits
A. Preventive Properties
- Remineralization Support: The release of fluoride and calcium ions not only helps in neutralizing acids but also supports the remineralization of adjacent tooth structures, enhancing the overall health of the tooth.
B. Versatility
- Application in Various Situations: The ability to cure in bulk and its compatibility with different cavity classes make Ariston pHc a versatile choice for dental practitioners.
Resin Modified Glass Ionomer Cements (RMGIs)
Resin Modified Glass Ionomer Cements (RMGIs) represent a significant advancement in dental materials, combining the beneficial properties of both glass ionomer cements and composite resins. This overview will discuss the composition, advantages, and disadvantages of RMGIs, highlighting their role in modern dentistry.
1. Composition of Resin Modified Glass Ionomer Cements
A. Introduction
- First Introduced: RMGIs were first introduced as Vitrebond (3M), utilizing a powder-liquid system designed to enhance the properties of traditional glass ionomer cements.
B. Components
- Powder: The powder component consists of fluorosilicate glass, which provides the material with its glass ionomer properties. It also contains a photoinitiator or chemical initiator to facilitate setting.
- Liquid: The liquid component contains:
- 15 to 25% Resin Component: Typically in the form of Hydroxyethyl Methacrylate (HEMA), which enhances the material's bonding and aesthetic properties.
- Polyacrylic Acid Copolymer: This component contributes to the chemical adhesion properties of the cement.
- Photoinitiator and Water: These components are essential for the setting reaction and workability of the material.
2. Advantages of Resin Modified Glass Ionomer Cements
RMGIs offer a range of benefits that make them suitable for various dental applications:
-
Extended Working Time: RMGIs provide a longer working time compared to traditional glass ionomers, allowing for more flexibility during placement.
-
Control on Setting: The setting reaction can be controlled through light curing, which allows for adjustments before the material hardens.
-
Good Adaptation: RMGIs exhibit excellent adaptation to tooth structure, which helps minimize gaps and improve the seal.
-
Chemical Adhesion to Enamel and Dentin: RMGIs bond chemically to both enamel and dentin, enhancing retention and reducing the risk of microleakage.
-
Fluoride Release: Like traditional glass ionomers, RMGIs release fluoride, which can help in the prevention of secondary caries.
-
Improved Aesthetics: The resin component allows for better color matching and aesthetics compared to conventional glass ionomers.
-
Low Interfacial Shrinkage Stress: RMGIs exhibit lower shrinkage stress upon setting compared to composite resins, reducing the risk of debonding or gap formation.
-
Superior Strength Characteristics: RMGIs generally have improved mechanical properties, making them suitable for a wider range of clinical applications.
3. Disadvantages of Resin Modified Glass Ionomer Cements
Despite their advantages, RMGIs also have some limitations:
-
Shrinkage on Setting: RMGIs can experience some degree of shrinkage during the setting process, which may affect the marginal integrity of the restoration.
-
Limited Depth of Cure: The depth of cure can be limited, especially when using more opaque lining cements. This can affect the effectiveness of the material in deeper cavities.
Early Childhood Caries (ECC) Classification
Early Childhood Caries (ECC) is a significant public health concern characterized by the presence of carious lesions in young children. It is classified into three types based on severity, affected teeth, and underlying causes. Understanding these classifications helps in diagnosing, preventing, and managing ECC effectively.
Type I ECC (Mild to Moderate)
A. Characteristics
- Affected Teeth: Carious lesions primarily involve the molars and incisors.
- Age Group: Typically observed in children aged 2 to 5 years.
B. Causes
- Dietary Factors: The primary cause is usually a combination of cariogenic semisolid or solid foods, such as sugary snacks and beverages.
- Oral Hygiene: Lack of proper oral hygiene practices contributes significantly to the development of caries.
- Progression: As the cariogenic challenge persists, the number of affected teeth tends to increase.
C. Clinical Implications
- Management: Emphasis on improving oral hygiene practices and dietary modifications can help control and reverse early carious lesions.
Type II ECC (Moderate to Severe)
A. Characteristics
- Affected Teeth: Labio-lingual carious lesions primarily affect the maxillary incisors, with or without molar caries, depending on the child's age.
- Age Group: Typically seen soon after the first tooth erupts.
B. Causes
- Feeding Practices: Common causes include inappropriate use of feeding bottles, at-will breastfeeding, or a combination of both.
- Oral Hygiene: Poor oral hygiene practices exacerbate the condition.
- Progression: If not controlled, Type II ECC can progress to more advanced stages of caries.
C. Clinical Implications
- Intervention: Early intervention is crucial, including education on proper feeding practices and oral hygiene to prevent further carious development.
Type III ECC (Severe)
A. Characteristics
- Affected Teeth: Carious lesions involve almost all teeth, including the mandibular incisors.
- Age Group: Usually observed in children aged 3 to 5 years.
B. Causes
- Multifactorial: The etiology is a combination of various factors, including poor oral hygiene, dietary habits, and possibly socio-economic factors.
- Rampant Nature: This type of ECC is rampant and can affect immune tooth surfaces, leading to extensive decay.
C. Clinical Implications
- Management: Requires comprehensive dental treatment, including restorative procedures and possibly extractions. Education on preventive measures and regular dental visits are essential to manage and prevent recurrence.
Onlay Preparation
Onlay preparations are a type of indirect restoration used to restore teeth that have significant loss of structure but still retain enough healthy tooth structure to support a restoration. Onlays are designed to cover one or more cusps of a tooth and are often used when a full crown is not necessary.
1. Definition of Onlay
A. Onlay
- An onlay is a restoration that is fabricated using an indirect procedure, covering one or more cusps of a tooth. It is designed to restore the tooth's function and aesthetics while preserving as much healthy tooth structure as possible.
2. Indications for Onlay Preparation
- Extensive Caries: When a tooth has significant decay that cannot be effectively treated with a filling but does not require a full crown.
- Fractured Teeth: For teeth that have fractured cusps or significant structural loss.
- Strengthening: To reinforce a tooth that has been weakened by previous restorations or caries.
3. Onlay Preparation Procedure
A. Initial Assessment
- Clinical Examination: Assess the extent of caries or damage to determine if an onlay is appropriate.
- Radiographic Evaluation: Use X-rays to evaluate the tooth structure and surrounding tissues.
B. Tooth Preparation
-
Burs Used:
- Commonly used burs include No. 169 L for initial cavity preparation and No. 271 for refining the preparation.
-
Cavity Preparation:
- Occlusal Entry: The initial occlusal entry should be approximately 1.5 mm deep.
- Divergence of Walls: All cavity walls should
diverge occlusally by 2-5 degrees:
- 2 degrees: For short vertical walls.
- 5 degrees: For long vertical walls.
-
Proximal Box Preparation:
- The proximal box margins should clear adjacent teeth by 0.2-0.5 mm, with 0.5 ± 0.2 mm being ideal.
C. Bevels and Flares
-
Facial and Lingual Flares:
- Primary and secondary flares should be created on the facial and lingual proximal walls to form the walls in two planes.
- The secondary flare widens the proximal box, allowing for better access and cleaning.
-
Gingival Bevels:
- Should be 0.5-1 mm wide and blend with the secondary flare, resulting in a marginal metal angle of 30 degrees.
-
Occlusal Bevels:
- Present on the cavosurface margins of the cavity on the occlusal surface, approximately 1/4th the depth of the respective wall, resulting in a marginal metal angle of 40 degrees.
4. Dimensions for Onlay Preparation
A. Depth of Preparation
- Occlusal Depth: Approximately 1.5 mm to ensure adequate thickness of the restorative material.
- Proximal Box Depth: Should be sufficient to accommodate the onlay while maintaining the integrity of the tooth structure.
B. Marginal Angles
- Facial and Lingual Margins: Should be prepared with a 30-degree angle for burnishability and strength.
- Enamel Margins: Ideally, the enamel margins should be blunted to a 140-degree angle to enhance strength.
C. Cusp Reduction
- Cusp Coverage: Cusp reduction is indicated when more than 1/2 of a cusp is involved, and mandatory when 2/3 or more is involved.
- Uniform Metal Thickness: The reduction must provide for a uniform metal thickness of approximately 1.5 mm over the reduced cusps.
- Facial Cusp Reduction: For maxillary premolars and first molars, the reduction of the facial cusp should be 0.75-1 mm for esthetic reasons.
D. Reverse Bevel
- Definition: A bevel on the margins of the reduced cusp, extending beyond any occlusal contact with opposing teeth, resulting in a marginal metal angle of 30 degrees.
5. Considerations for Onlay Preparation
- Retention and Resistance: The preparation should be designed to maximize retention and resistance form, which may include the use of proximal retentive grooves and collar features.
- Aesthetic Considerations: The preparation should account for the esthetic requirements, especially in anterior teeth or visible areas.
- Material Selection: The choice of material (e.g., gold, porcelain, composite) will influence the preparation design and dimensions.
Early Childhood Caries (ECC) Classification
Early Childhood Caries (ECC) is a significant public health concern characterized by the presence of carious lesions in young children. It is classified into three types based on severity, affected teeth, and underlying causes. Understanding these classifications helps in diagnosing, preventing, and managing ECC effectively.
Type I ECC (Mild to Moderate)
A. Characteristics
- Affected Teeth: Carious lesions primarily involve the molars and incisors.
- Age Group: Typically observed in children aged 2 to 5 years.
B. Causes
- Dietary Factors: The primary cause is usually a combination of cariogenic semisolid or solid foods, such as sugary snacks and beverages.
- Oral Hygiene: Lack of proper oral hygiene practices contributes significantly to the development of caries.
- Progression: As the cariogenic challenge persists, the number of affected teeth tends to increase.
C. Clinical Implications
- Management: Emphasis on improving oral hygiene practices and dietary modifications can help control and reverse early carious lesions.
Type II ECC (Moderate to Severe)
A. Characteristics
- Affected Teeth: Labio-lingual carious lesions primarily affect the maxillary incisors, with or without molar caries, depending on the child's age.
- Age Group: Typically seen soon after the first tooth erupts.
B. Causes
- Feeding Practices: Common causes include inappropriate use of feeding bottles, at-will breastfeeding, or a combination of both.
- Oral Hygiene: Poor oral hygiene practices exacerbate the condition.
- Progression: If not controlled, Type II ECC can progress to more advanced stages of caries.
C. Clinical Implications
- Intervention: Early intervention is crucial, including education on proper feeding practices and oral hygiene to prevent further carious development.
Type III ECC (Severe)
A. Characteristics
- Affected Teeth: Carious lesions involve almost all teeth, including the mandibular incisors.
- Age Group: Usually observed in children aged 3 to 5 years.
B. Causes
- Multifactorial: The etiology is a combination of various factors, including poor oral hygiene, dietary habits, and possibly socio-economic factors.
- Rampant Nature: This type of ECC is rampant and can affect immune tooth surfaces, leading to extensive decay.
C. Clinical Implications
- Management: Requires comprehensive dental treatment, including restorative procedures and possibly extractions. Education on preventive measures and regular dental visits are essential to manage and prevent recurrence.
Types of fillers:
- Silica: Common in microfilled and hybrid composites, providing good aesthetics and polishability.
- Glass particles: Used in macrofill and microfill composites for high strength and durability.
- Ceramic particles: Provide excellent biocompatibility and wear resistance.
- Zirconia/silica: Combined to improve the strength and translucency of the composite.
- Nanoparticles: Enhance the resin's physical properties, including strength and wear resistance, while also offering improved aesthetics.
Filler size:
- Macrofillers: 10-50 μm, suitable for class I and II restorations where high strength is not essential but a good seal is required.
- Microfillers: 0.01-10 μm, used for fine detailing and aesthetic restorations due to their ability to blend with the tooth structure.
- Hybrid fillers: Combine macro and microfillers for restorations requiring both strength and aesthetics.
Filler loading: The amount of filler in the resin affects the material's physical properties:
- High filler loading: Increases strength, wear resistance, and decreases shrinkage but can compromise the resin's ability to adapt to the tooth structure.
- Low filler loading: Provides better flow and marginal adaptation but may result in lower strength and durability.
Filler-resin interaction:
- Chemical bonding: Improves the adhesion between the filler and the resin matrix.
- Mechanical interlocking: Larger filler particles create a stronger mechanical bond within the resin.
- Polymerization shrinkage: The filler can reduce shrinkage stress, which is crucial for minimizing marginal gaps and microleakage.
Selection criteria:
- Clinical requirements: The filler should meet the specific needs of the restoration, such as strength, wear resistance, and aesthetics.
- Tooth location: Anterior teeth may require more translucent fillers for better aesthetics, while posterior teeth need stronger, more opaque materials.
- Patient's preferences: Some patients may prefer more natural-looking restorations.
- Clinician's skill: Different fillers may require varying application techniques and curing times.