Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Conservative Dentistry

Early Childhood Caries (ECC) Classification

Early Childhood Caries (ECC) is a significant public health concern characterized by the presence of carious lesions in young children. It is classified into three types based on severity, affected teeth, and underlying causes. Understanding these classifications helps in diagnosing, preventing, and managing ECC effectively.

Type I ECC (Mild to Moderate)

A. Characteristics

  • Affected Teeth: Carious lesions primarily involve the molars and incisors.
  • Age Group: Typically observed in children aged 2 to 5 years.

B. Causes

  • Dietary Factors: The primary cause is usually a combination of cariogenic semisolid or solid foods, such as sugary snacks and beverages.
  • Oral Hygiene: Lack of proper oral hygiene practices contributes significantly to the development of caries.
  • Progression: As the cariogenic challenge persists, the number of affected teeth tends to increase.

C. Clinical Implications

  • Management: Emphasis on improving oral hygiene practices and dietary modifications can help control and reverse early carious lesions.

Type II ECC (Moderate to Severe)

A. Characteristics

  • Affected Teeth: Labio-lingual carious lesions primarily affect the maxillary incisors, with or without molar caries, depending on the child's age.
  • Age Group: Typically seen soon after the first tooth erupts.

B. Causes

  • Feeding Practices: Common causes include inappropriate use of feeding bottles, at-will breastfeeding, or a combination of both.
  • Oral Hygiene: Poor oral hygiene practices exacerbate the condition.
  • Progression: If not controlled, Type II ECC can progress to more advanced stages of caries.

C. Clinical Implications

  • Intervention: Early intervention is crucial, including education on proper feeding practices and oral hygiene to prevent further carious development.

Type III ECC (Severe)

A. Characteristics

  • Affected Teeth: Carious lesions involve almost all teeth, including the mandibular incisors.
  • Age Group: Usually observed in children aged 3 to 5 years.

B. Causes

  • Multifactorial: The etiology is a combination of various factors, including poor oral hygiene, dietary habits, and possibly socio-economic factors.
  • Rampant Nature: This type of ECC is rampant and can affect immune tooth surfaces, leading to extensive decay.

C. Clinical Implications

  • Management: Requires comprehensive dental treatment, including restorative procedures and possibly extractions. Education on preventive measures and regular dental visits are essential to manage and prevent recurrence.

Pouring the Final Impression

Technique

  • Mixing Die Stone: A high-strength die stone is mixed using a vacuum mechanical mixer to ensure a homogenous mixture without air bubbles.
  • Pouring Process:
    • The die stone is poured into the impression using a vibrator and a No. 7 spatula.
    • The first increments should be applied in small amounts, allowing the material to flow into the remote corners and angles of the preparation without trapping air.
  • Surface Tension-Reducing Agents: These agents can be added to the die stone to enhance its flow properties, allowing it to penetrate deep into the internal corners of the impression.

Final Dimensions

  • The impression should be filled sufficiently so that the dies will be approximately 15 to 20 mm tall occluso-gingivally after trimming. This height is important for the stability and accuracy of the final restoration.

Composite Materials- Mechanical Properties and Clinical Considerations

Introduction

Composite materials are essential in modern dentistry, particularly for restorative procedures. Their mechanical properties, aesthetic qualities, and bonding capabilities make them a preferred choice for various applications. This lecture will focus on the importance of the bond between the organic resin matrix and inorganic filler, the evolution of composite materials, and key clinical considerations in their application.

1. Bonding in Composite Materials

Importance of Bonding

For a composite to exhibit good mechanical properties, a strong bond must exist between the organic resin matrix and the inorganic filler. This bond is crucial for:

  • Strength: Enhancing the overall strength of the composite.
  • Durability: Reducing solubility and water absorption, which can compromise the material over time.

Role of Silane Coupling Agents

  • Silane Coupling Agents: These agents are used to coat filler particles, facilitating a chemical bond between the filler and the resin matrix. This interaction significantly improves the mechanical properties of the composite.

2. Evolution of Composite Materials

Microfill Composites

  • Introduction: In the late 1970s, microfill composites, also known as "polishable" composites, were introduced.
  • Characteristics: These materials replaced the rough surface of conventional composites with a smooth, lustrous surface similar to tooth enamel.
  • Composition: Microfill composites contain colloidal silica particles instead of larger filler particles, allowing for better polishability and aesthetic outcomes.

Hybrid Composites

  • Structure: Hybrid composites contain a combination of larger filler particles and sub-micronsized microfiller particles.
  • Surface Texture: This combination provides a smooth "patina-like" surface texture in the finished restoration, enhancing both aesthetics and mechanical properties.

3. Clinical Considerations

Polymerization Shrinkage and Configuration Factor (C-factor)

  • C-factor: The configuration factor is the ratio of bonded surfaces to unbonded surfaces in a tooth preparation. A higher C-factor can lead to increased polymerization shrinkage, which may compromise the restoration.
  • Clinical Implications: Understanding the C-factor is essential for minimizing shrinkage effects, particularly in Class II restorations.

Incremental Placement of Composite

  • Incremental Technique: For Class II restorations, it is crucial to place and cure the composite incrementally. This approach helps reduce the effects of polymerization shrinkage, especially along the gingival floor.
  • Initial Increment: The first small increment should be placed along the gingival floor and extend slightly up the facial and lingual walls to ensure proper adaptation and minimize stress.

4. Curing Techniques

Light-Curing Systems

  • Common Systems: The most common light-curing systems include quartz/tungsten/halogen lamps. However, alternatives such as plasma arc curing (PAC) and argon laser curing systems are available.
  • Advantages of PAC and Laser Systems: These systems provide high-intensity and rapid polymerization compared to traditional halogen systems, which can be beneficial in clinical settings.

Enamel Beveling

  • Beveling Technique: The advantage of an enamel bevel in composite tooth preparation is that it exposes the ends of the enamel rods, allowing for more effective etching compared to only exposing the sides.
  • Clinical Application: Proper beveling can enhance the bond strength and overall success of the restoration.

5. Managing Microfractures and Marginal Integrity

Causes of Microfractures

Microfractures in marginal enamel can result from:

  • Traumatic contouring or finishing techniques.
  • Inadequate etching and bonding.
  • High-intensity light-curing, leading to excessive polymerization stresses.

Potential Solutions

To address microfractures, clinicians can consider:

  • Re-etching, priming, and bonding the affected area.
  • Conservatively removing the fault and re-restoring.
  • Using atraumatic finishing techniques, such as light intermittent pressure.
  • Employing slow-start polymerization techniques to reduce stress.

Beveling in Restorative Dentistry

Beveling: Beveling refers to the process of angling the edges of a cavity preparation to create a smooth transition between the tooth structure and the restorative material. This technique can enhance the aesthetics and retention of certain materials.

Characteristics of Ceramic Materials

  • Brittleness: Ceramic materials, such as porcelain, are inherently brittle and can be prone to fracture under stress.
  • Bonding Mechanism: Ceramics rely on adhesive bonding to tooth structure, which can be compromised by beveling.

Contraindications

  • Cavosurface Margins: Beveling the cavosurface margins of ceramic restorations is contraindicated because:
    • It can weaken the bond between the ceramic and the tooth structure.
    • It may create unsupported enamel, increasing the risk of chipping or fracture of the ceramic material.

Beveling with Amalgam Restorations

Amalgam Characteristics

  • Strength and Durability: Amalgam is a strong and durable material that can withstand significant occlusal forces.
  • Retention Mechanism: Amalgam relies on mechanical retention rather than adhesive bonding.

Beveling Guidelines

  • General Contraindications: Beveling is generally contraindicated when using amalgam, as it can reduce the mechanical retention of the restoration.
  • Exception for Class II Preparations:
    • Gingival Floor Beveling: In Class II preparations where enamel is still present, a slight bevel (approximately 15 to 20 degrees) may be placed on the gingival floor. This is done to:
      • Remove unsupported enamel rods, which can lead to enamel fracture.
      • Enhance the seal between the amalgam and the tooth structure, improving the longevity of the restoration.

Technique for Beveling

  • Preparation: When beveling the gingival floor:
    • Use a fine diamond bur or a round bur to create a smooth, angled surface.
    • Ensure that the bevel is limited to the enamel portion of the wall to maintain the integrity of the underlying dentin.

Clinical Implications

A. Material Selection

  • Understanding the properties of the restorative material is essential for determining the appropriate preparation technique.
  • Clinicians should be aware of the contraindications for beveling based on the material being used to avoid compromising the restoration's success.

B. Restoration Longevity

  • Proper preparation techniques, including appropriate beveling when indicated, can significantly impact the longevity and performance of restorations.
  • Regular monitoring of restorations is essential to identify any signs of failure or degradation, particularly in areas where beveling has been performed.

Surface Preparation for Mechanical Bonding

Methods for Producing Surface Roughness

  • Grinding and Etching: The common methods for creating surface roughness to enhance mechanical bonding include grinding or etching the surface.
    • Grinding: This method produces gross mechanical roughness but leaves a smear layer of hydroxyapatite crystals and denatured collagen approximately 1 to 3 µm thick.
    • Etching: Etching can remove the smear layer and create a more favorable surface for bonding.

Importance of Surface Preparation

  • Proper surface preparation is critical for achieving effective mechanical bonding between dental materials, ensuring the longevity and success of restorations.

Bases in Restorative Dentistry

Bases are an essential component in restorative dentistry, serving as a thicker layer of material placed beneath restorations to provide additional protection and support to the dental pulp and surrounding structures. Below is an overview of the characteristics, objectives, and types of bases used in dental practice.

1. Characteristics of Bases

A. Thickness

  • Typical Thickness: Bases are generally thicker than liners, typically ranging from 1 to 2 mm. Some bases may be around 0.5 to 0.75 mm thick.

B. Functions

  • Thermal Protection: Bases provide thermal insulation to protect the pulp from temperature changes that can occur during and after the placement of restorations.
  • Mechanical Support: They offer supplemental mechanical support for the restoration by distributing stress on the underlying dentin surface. This is particularly important during procedures such as amalgam condensation, where forces can be applied to the restoration.

2. Objectives of Using Bases

The choice of base material and its application depend on the Remaining Dentin Thickness (RDT), which is a critical factor in determining the need for a base:

  • RDT > 2 mm: No base is required, as there is sufficient dentin to protect the pulp.
  • RDT 0.5 - 2 mm: A base is indicated, and the choice of material depends on the restorative material being used.
  • RDT < 0.5 mm: Calcium hydroxide (Ca(OH)₂) or Mineral Trioxide Aggregate (MTA) should be used to promote the formation of reparative dentin, as the remaining dentin is insufficient to provide adequate protection.

3. Types of Bases

A. Common Base Materials

  • Zinc Phosphate (ZnPO₄): Known for its good mechanical properties and thermal insulation.
  • Glass Ionomer Cement (GIC): Provides thermal protection and releases fluoride, which can help in preventing caries.
  • Zinc Polycarboxylate: Offers good adhesion to tooth structure and provides thermal insulation.

B. Properties

  • Mechanical Protection: Bases distribute stress effectively, reducing the risk of fracture in the restoration and protecting the underlying dentin.
  • Thermal Insulation: Bases are poor conductors of heat and cold, helping to maintain a stable temperature at the pulp level.

Dental Burs: Design, Function, and Performance

Dental burs are essential tools in operative dentistry, used for cutting, shaping, and finishing tooth structure and restorative materials. This guide will cover the key features of dental burs, including blade design, rake angle, clearance angle, run-out, and performance characteristics.

1. Blade Design and Flutes

A. Blade Configuration

  • Blades and Flutes: Blades on a bur are uniformly spaced, with depressed areas between them known as flutes. The design of the blades and flutes affects the cutting efficiency and smoothness of the bur's action.
  • Number of Blades:
    • The number of blades on a bur is always even.
    • Excavating Burs: Typically have 6-10 blades, designed for efficient material removal.
    • Finishing Burs: Have 12-40 blades, providing a smoother finish.

B. Cutting Efficiency

  • Smoother Cutting Action: A greater number of blades results in a smoother cutting action at low speeds.
  • Reduced Efficiency: As the number of blades increases, the space between subsequent blades decreases, leading to less surface area being cut and reduced efficiency.

2. Vibration Characteristics

A. Vibration and Patient Comfort

  • Vibration Frequency: Vibrations over 1,300 cycles per second are generally imperceptible to patients.
  • Effect of Blade Number: Fewer blades on a bur tend to produce greater vibrations, which can affect patient comfort.
  • RPM and Vibration: Higher RPMs produce less amplitude and greater frequency of vibration, contributing to a smoother experience for the patient.

3. Rake Angle

A. Definition

  • Rake Angle: The angle that the face of the blade makes with a radial line from the center of the bur to the blade.

B. Cutting Efficiency

  • Positive Rake Angle: Burs with a positive rake angle are generally desired for cutting efficiency.
  • Rake Angle Hierarchy: The cutting efficiency is ranked as follows:
    • Positive rake > Radial rake > Negative rake
  • Clogging: Burs with a positive rake angle may experience clogging due to debris accumulation.

4. Clearance Angle

A. Definition

  • Clearance Angle: This angle provides clearance between the working edge and the cutting edge of the bur, allowing for effective cutting without binding.

5. Run-Out

A. Definition

  • Run-Out: Refers to the eccentricity or maximum displacement of the bur head from its axis of rotation.
  • Acceptable Value: The average value of clinically acceptable run-out is about 0.023 mm. Excessive run-out can lead to uneven cutting and discomfort for the patient.

6. Load Characteristics

A. Load Applied by Dentist

  • Low Speed: The minimum and maximum load applied through the bur is typically between 100 – 1500 grams.
  • High Speed: For high-speed burs, the load is generally between 60 – 120 grams.

7. Diamond Stones

A. Abrasive Efficiency

  • Diamond Stones: These are the hardest and most efficient abrasive stones available for removing tooth enamel. They are particularly effective for cutting and finishing hard dental materials.

Explore by Exams