Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Conservative Dentistry

Dental Amalgam and Direct Gold Restorations

In restorative dentistry, understanding the properties of materials and the techniques used for their application is essential for achieving optimal outcomes.  .

1. Mechanical Properties of Amalgam

Compressive and Tensile Strength

  • Compressive Strength: Amalgam exhibits high compressive strength, which is essential for withstanding the forces of mastication. The minimum compressive strength of amalgam should be at least 310 MPa.
  • Tensile Strength: Amalgam has relatively low tensile strength, typically ranging between 48-70 MPa. This characteristic makes it more susceptible to fracture under tensile forces, which is why proper cavity design and placement techniques are critical.

Implications for Use

  • Cavity Design: The design of the cavity preparation should minimize the risk of tensile forces acting on the restoration. This can be achieved through appropriate wall angles and retention features.
  • Restoration Longevity: Understanding the mechanical properties of amalgam helps clinicians predict the longevity and performance of the restoration under functional loads.

2. Direct Gold Restorations

Requirements for Direct Gold Restorations

  • Ideal Surgical Field: A clean and dry field is essential for the successful placement of direct gold restorations. This ensures that the gold adheres properly and that contamination is minimized.
  • Conservative Cavity Preparation: The cavity preparation must be methodical and conservative, preserving as much healthy tooth structure as possible while providing adequate retention for the gold.
  • Systematic Condensation: The condensation of gold must be performed carefully to build a solid block of gold within the tooth. This involves using appropriate instruments and techniques to ensure that the gold is well-adapted to the cavity walls.

Condensation Technique

  • Building a Solid Block: The goal of the condensation procedure is to create a dense, solid mass of gold that will withstand occlusal forces and provide a durable restoration.

3. Gingival Displacement Techniques

Materials for Displacement

To effectively displace the gingival tissue during restorative procedures, various materials can be used, including:

  1. Heavy Weight Rubber Dam: Provides excellent isolation and displacement of gingival tissue.
  2. Plain Cotton Thread: A simple and effective method for gingival displacement.
  3. Epinephrine-Saturated String:
    • 1:1000 Epinephrine: Used for 10 minutes; not recommended for cardiac patients due to potential systemic effects.
  4. Aluminum Chloride Solutions:
    • 5% Aluminum Chloride Solution: Used for gingival displacement.
    • 20% Tannic Acid: Another option for controlling bleeding and displacing tissue.
    • 4% Levo Epinephrine with 9% Potassium Aluminum: Used for 10 minutes.
  5. Zinc Chloride or Ferric Sulfate:
    • 8% Zinc Chloride: Used for 3 minutes.
    • Ferric Sub Sulfate: Also used for 3 minutes.

Clinical Considerations

  • Selection of Material: The choice of material for gingival displacement should be based on the clinical situation, patient health, and the specific requirements of the procedure.

4. Condensation Technique for Gold

Force Application

  • Angle of Condensation: The force of condensation should be applied at a 45-degree angle to the cavity walls and floor during malleting. This orientation allows for maximum adaptation of the gold against the walls, floors, line angles, and point angles of the cavity.
  • Direction of Force: The forces must be directed at 90 degrees to any previously condensed gold. This technique ensures that the gold is compacted effectively and that there are no voids or gaps in the restoration.

Importance of Technique

  • Adaptation and Density: Proper condensation technique is critical for achieving optimal adaptation and density of the gold restoration, which contributes to its longevity and performance.

Condensers/pluggers are instruments used to deliver the forces of compaction to the underlying restorative material. There are

several methods for the application of these forces:

1. Hand pressure: use of this method alone is contraindicated except in a few situations like adapting the first piece of gold to

the convenience or point angles and where the line of force will not permit use of other methods. Powdered golds are also

known to be better condensed with hand pressure. Small condenser points of 0.5 mm in diameter are generally

recommended as they do not require very high forces for their manipulation.

2. Hand malleting: Condensation by hand malleting is a team work in which the operator directs the condenser and moves it

over the surface, while the assistant provides rhythmic blows from the mallet. Long handled condensers and leather faced

mallets (50 gms in weight) are used for this purpose. The technique allows greater control and the condensers can be

changed rapidly when required. However, with the introduction of mechanical malleting, use of this method has decreased

considerably.

3. Automatic hand malleting: This method utilizes a spring loaded instrument that delivers the desired force once the spiral

spring is released. (Disadvantage is that the blow descends very rapidly even before full pressure has been exerted on the

condenser point.

4. Electric malleting (McShirley electromallet): This instrument accommodates various shapes of con-denser points and has a

mallet in the handle itself which remains dormant until wished by the operator to function. The intensity or amplitude

generated can vary from 0.2 ounces to 15 pounds and the frequency can range from 360-3600 cycles/minute.

5. Pneumatic malleting (Hollenback condenser): This is the most recent and satisfactory method first developed by

Dr. George M. Hollenback. Pneumatic mallets consist of vibrating nit condensers and detachable tips run by

compressed air. The air is carried through a thin rubber tubing attached to the hand piece. Controlling the air

pressure by a rheostat nit allows adjusting the frequency and amplitude of condensation strokes. The construction

of the handpiece is such that the blow does not fall until pressure is placed on the condenser point. This continues

until released. Pneumatic mallets are available with both straight and angled for handpieces.

Refractory materials are essential in the field of dentistry, particularly in the branch of conservative dentistry and prosthodontics, for the fabrication of various restorations and appliances. These materials are characterized by their ability to withstand high temperatures without undergoing significant deformation or chemical change. This is crucial for the longevity and stability of the dental work. The primary function of refractory materials is to provide a precise and durable mold or pattern for the casting of metal restorations, such as crowns, bridges, and inlays/onlays.

Refractory materials include:

- Plaster of Paris: The most commonly used refractory material in dentistry, plaster is composed of calcium sulfate hemihydrate. It is mixed with water to form a paste that is used to make study models and casts. It has a relatively low expansion coefficient and is easy to manipulate, making it suitable for various applications.


- Dental stone: A more precise alternative to plaster, dental stone is a type of gypsum product that offers higher strength and less dimensional change. It is commonly used for master models and die fabrication due to its excellent surface detail reproduction.


- Investment materials: Used in the casting process of fabricating indirect restorations, investment materials are refractory and encapsulate the wax pattern to create a mold. They can withstand the high temperatures required for metal casting without distortion.


- Zirconia: A newer refractory material gaining popularity, zirconia is a ceramic that is used for the fabrication of all-ceramic crowns and bridges. It is extremely durable and has a high resistance to wear and fracture.


- Refractory die materials: These are used in the production of metal-ceramic restorations. They are capable of withstanding the high temperatures involved in the ceramic firing process and provide a reliable foundation for the ceramic layers.

The selection of a refractory material is based on factors such as the intended use, the required accuracy, and the specific properties needed for the final restoration. The material must have a low thermal expansion coefficient to minimize the thermal stress during the casting process and maintain the integrity of the final product. Additionally, the material should be able to reproduce the fine details of the oral anatomy and have good physical and mechanical properties to ensure stability and longevity.

Refractory materials are typically used in the following procedures:

- Impression taking: Refractory materials are used to make models from the patient's impressions.
- Casting of metal restorations: A refractory mold is created from the model to cast the metal framework.
- Ceramic firing: Refractory die materials hold the ceramic in place while it is fired at high temperatures.
- Temporary restorations: Some refractory materials can be used to produce temporary restorations that are highly accurate and durable.

Refractory materials are critical for achieving the correct fit and function of dental restorations, as well as ensuring patient satisfaction with the aesthetics and comfort of the final product.

Proper Pin Placement in Amalgam Restorations

Principles of Pin Placement

  • Strength Maintenance: Proper pin placement does not reduce the strength of amalgam restorations. The goal is to maintain the strength of the restoration regardless of the clinical problem, tooth size, or available space for pins.
  • Single Unit Restoration: In modern amalgam preparations, it is essential to secure the restoration and the tooth as a single unit. This is particularly important when significant tooth structure has been lost.

Considerations for Cusp Replacement

  • Cusp Replacement: If the mesiofacial wall is replaced, the mesiofacial cusp must also be replaced to ensure proper occlusal function and distribution of forces.
  • Force Distribution: It is crucial to recognize that forces of occlusal loading must be distributed over a large area. If the distofacial cusp were replaced with a pin, there would be a tendency for the restoration to rotate around the mesial pins, potentially leading to displacement or failure of the restoration.

Pin size

 

In general, increase in diameter of pin offers more retention but large sized pins can result in more stresses in dentin. Pins are available in four color coded sizes:

 

        Name

Pin diameter

Color code

·         Minuta

0.38 mm

Pink

·         Minikin

0.48mm

Red

·         Minim

0.61 mm

Silver

·         Regular

0.78 mm

Gold

 

Selection of pin size depends upon the following factors:

 

·            Amount of dentin present

·            Amount of retention required

 

For most posterior restorations, Minikin size of pins is used because they provide maximum retention without causing crazing in dentin.

A. Retention vs. Stress

  • Retention: Generally, an increase in the diameter of the pin offers more retention for the restoration.
  • Stress: However, larger pins can result in increased stresses in the dentin, which may lead to complications such as crazing or cracking of the tooth structure.

2. Factors Influencing Pin Size Selection

The selection of pin size depends on several factors:

A. Amount of Dentin Present

  • Assessment: The amount of remaining dentin is a critical factor in determining the appropriate pin size. More dentin allows for the use of larger pins, while less dentin may necessitate smaller pins to avoid excessive stress.

B. Amount of Retention Required

  • Retention Needs: The specific retention requirements of the restoration will also influence pin size selection. In cases where maximum retention is needed, larger pins may be considered, provided that sufficient dentin is available to accommodate them without causing damage.

3. Recommended Pin Size for Posterior Restorations

For most posterior restorations, the Minikin size pin (0.48 mm, color-coded red) is commonly used. This size provides a balance between adequate retention and minimizing the risk of causing crazing in the dentin.

CPP-ACP, or casein phosphopeptide-amorphous calcium phosphate, is a significant compound in dentistry, particularly in the prevention and management of dental caries (tooth decay).

Role and applications in dentistry:

Composition and Mechanism

  • Composition: CPP-ACP is derived from casein, a milk protein. It contains clusters of calcium and phosphate ions that are stabilized by casein phosphopeptides.
  • Mechanism: The unique structure of CPP-ACP allows it to stabilize calcium and phosphate in a soluble form, which can be delivered to the tooth surface. When applied to the teeth, CPP-ACP can release these ions, promoting the remineralization of enamel and dentin, especially in early carious lesions.

Benefits in Dentistry

  1. Remineralization: CPP-ACP helps in the remineralization of demineralized enamel, making it an effective treatment for early carious lesions.
  2. Caries Prevention: Regular use of CPP-ACP can help prevent the development of caries by maintaining a higher concentration of calcium and phosphate in the oral environment.
  3. Reduction of Sensitivity: It can help reduce tooth sensitivity by occluding dentinal tubules and providing a protective layer over exposed dentin.
  4. pH Buffering: CPP-ACP can help buffer the pH in the oral cavity, reducing the risk of acid-induced demineralization.
  5. Compatibility with Fluoride: CPP-ACP can be used in conjunction with fluoride, enhancing the overall effectiveness of caries prevention strategies.

Applications

  • Toothpaste: Some toothpaste formulations include CPP-ACP to enhance remineralization and provide additional protection against caries.
  • Chewing Gum: Sucrose-free chewing gums containing CPP-ACP can be used to promote oral health, especially after meals.
  • Dental Products: CPP-ACP is also found in various dental products, including varnishes and gels, used in professional dental treatments.

Considerations

  • Lactose Allergy: Since CPP-ACP is derived from milk, it should be avoided by individuals with lactose intolerance or milk protein allergies.
  • Clinical Use: Dentists may recommend CPP-ACP products for patients at high risk for caries, those with a history of dental decay, or individuals undergoing orthodontic treatment.

 

Tooth Deformation Under Load

Biomechanical Properties of Teeth

  • Deformation (Strain): Teeth are not rigid structures; they undergo deformation (strain) during normal loading. This deformation is a natural response to the forces applied during chewing and other functional activities.
  • Intraoral Loads: The loads experienced by teeth can vary widely, with reported forces ranging from 10 to 431 N (1 N = 0.225 lb of force). A functional load of approximately 70 N is considered clinically normal.

Factors Influencing Load Distribution

  • Number of Teeth: The total number of teeth in the arch affects how forces are distributed. More teeth can share the load, reducing the stress on individual teeth.
  • Type of Occlusion: The occlusal relationship (how the upper and lower teeth come together) influences how forces are transmitted through the dental arch.
  • Occlusal Habits: Habits such as bruxism (teeth grinding) can significantly increase the forces applied to individual teeth, leading to greater strain and potential damage.

Clinical Implications

  • Restorative Considerations: Understanding the biomechanical behavior of teeth under load is essential for designing restorations that can withstand functional forces without failure.
  • Patient Management: Awareness of occlusal habits, such as bruxism, can guide clinicians in developing appropriate treatment plans, including the use of occlusal splints or other interventions to protect teeth from excessive forces.

Explore by Exams