NEET MDS Lessons
Conservative Dentistry
Glass ionomer cement is a tooth coloured material
Material was based on reaction between silicate glass powder & polyacrylicacid.
They bond chemically to tooth structure & release fluoride for relatively long period
CLASSIFICATION
Type I. For luting
Type II. For restoration
Type II.1 Restorative esthetic
Type II.2 Restorative reinforced
Type III. For liner & bases
Type IV. Fissure & sealent
Type V. As Orthodontic cement
Type VI. For core build up
Physical Properties
1. Low solubility
2. Coefficient of thermal expansion similar to dentin
3. Fluoride release and fluoride recharge
4. High compressive strengths
5. Bonds to tooth structure
6. Low flexural strength
7. Low shear strength
8. Dimensional change (slight expansion) (shrinks on setting, expands with water sorption)
9. Brittle
10.Lacks translucency
11.Rough surface texture
Indications for use of Type II glass ionomer cements
1) non-stress bearing areas
2) class III and V restorations in adults
3) class I and II restorations in primary dentition
4) temporary or “caries control” restorations
5) crown margin repairs
6) cement base under amalgam, resin, ceramics, direct and indirect gold
7) core buildups when at least 3 walls of tooth are remaining (after crown preparation)
Contraindications
1) high stress applications I. class IV and class II restorations II. cusp replacement III. core build-ups with less than 3 sound walls remaining
Composition
Factors affecting the rate or setting
1. Glass composition:Higher Alumina – Silica ratio, faster set and shorter working time.
2. Particle Size: finer the powder, faster the set.
3. Addition of Tartaric Acid:-Sharpens set without shortening the working time.
4. Relative proportions of the constituents: Greater the proportion of glass and lower the proportion of water, the faster the set.
5. Temperature
Setting Time
Type 1 - 4-5 min
type II - 7 min
PROPERTIES
Adhesion :
- Glass ionomer cement bonds chemically to the tooth structure->reaction occur between carboxyl group of poly acid & calcium of hydroxyl apatite.
- Bonding with enamel is higher than that of dentin ,due to greater inorganic content.
Esthetics :
-GIC is tooth coloured material & available in different shades.
Inferior to composites.
They lack translucency & rough surface texture.
Potential for discolouration & staining.
Biocompatibilty :
- Pulpal response to glass ionomer cement is favorable.
- Pulpal response is mild due to
- High buffering capacity of hydroxy apatite.
- Large molecular weight of the polyacrylic acid ,which prevents entry into dentinal tubules.
a) Pulp reaction – ZOE < Glass Ionomer < Zinc Phosphate
b) Powder:liquid ratio influences acidity
c) Solubility & Disintegration:-Initial solubility is high due to leaching of intermediate products.The complete setting reaction takes place in 24 hrs, cement should be protected from saliva during this period.
Anticariogenic properties :
- Fluoride is released from glass ionomer at the time of mixing & lies with in matrix.
Fluoride can be released out without affecting the physical properties of cement.
ADVANTAGE DISADVANTAGE
Primary Retention Form in Dental Restorations
Primary retention form refers to the geometric shape or design of a prepared cavity that helps resist the displacement or removal of a restoration due to tipping or lifting forces. Understanding the primary retention form is crucial for ensuring the longevity and stability of various types of dental restorations. Below is an overview of primary retention forms for different types of restorations.
1. Amalgam Restorations
A. Class I & II Restorations
- Primary Retention Form:
- Occlusally Converging External Walls: The walls of the cavity preparation converge towards the occlusal surface, which helps resist displacement.
- Occlusal Dovetail: In Class II restorations, an occlusal dovetail is often included to enhance retention by providing additional resistance to displacement.
B. Class III & V Restorations
- Primary Retention Form:
- Diverging External Walls: The external walls diverge outward, which can reduce retention.
- Retention Grooves or Coves: These features are added to enhance retention by providing mechanical interlocking and resistance to displacement.
2. Composite Restorations
A. Primary Retention Form
- Mechanical Bond:
- Acid Etching: The enamel and dentin surfaces are etched to create a roughened surface that enhances mechanical retention.
- Dentin Bonding Agents: These agents infiltrate the demineralized dentin and create a hybrid layer, providing a strong bond between the composite material and the tooth structure.
3. Cast Metal Inlays
A. Primary Retention Form
- Parallel Longitudinal Walls: The cavity preparation features parallel walls that help resist displacement.
- Small Angle of Divergence: A divergence of 2-5 degrees may be used to facilitate the seating of the inlay while still providing adequate retention.
4. Additional Considerations
A. Occlusal Dovetail and Secondary Retention Grooves
- Function: These features aid in preventing the proximal displacement of restorations by occlusal forces, enhancing the overall retention of the restoration.
B. Converging Axial Walls
- Function: Converging axial walls help prevent occlusal displacement of the restoration, ensuring that the restoration remains securely in place during function.
Early Childhood Caries (ECC) Classification
Early Childhood Caries (ECC) is a significant public health concern characterized by the presence of carious lesions in young children. It is classified into three types based on severity, affected teeth, and underlying causes. Understanding these classifications helps in diagnosing, preventing, and managing ECC effectively.
Type I ECC (Mild to Moderate)
A. Characteristics
- Affected Teeth: Carious lesions primarily involve the molars and incisors.
- Age Group: Typically observed in children aged 2 to 5 years.
B. Causes
- Dietary Factors: The primary cause is usually a combination of cariogenic semisolid or solid foods, such as sugary snacks and beverages.
- Oral Hygiene: Lack of proper oral hygiene practices contributes significantly to the development of caries.
- Progression: As the cariogenic challenge persists, the number of affected teeth tends to increase.
C. Clinical Implications
- Management: Emphasis on improving oral hygiene practices and dietary modifications can help control and reverse early carious lesions.
Type II ECC (Moderate to Severe)
A. Characteristics
- Affected Teeth: Labio-lingual carious lesions primarily affect the maxillary incisors, with or without molar caries, depending on the child's age.
- Age Group: Typically seen soon after the first tooth erupts.
B. Causes
- Feeding Practices: Common causes include inappropriate use of feeding bottles, at-will breastfeeding, or a combination of both.
- Oral Hygiene: Poor oral hygiene practices exacerbate the condition.
- Progression: If not controlled, Type II ECC can progress to more advanced stages of caries.
C. Clinical Implications
- Intervention: Early intervention is crucial, including education on proper feeding practices and oral hygiene to prevent further carious development.
Type III ECC (Severe)
A. Characteristics
- Affected Teeth: Carious lesions involve almost all teeth, including the mandibular incisors.
- Age Group: Usually observed in children aged 3 to 5 years.
B. Causes
- Multifactorial: The etiology is a combination of various factors, including poor oral hygiene, dietary habits, and possibly socio-economic factors.
- Rampant Nature: This type of ECC is rampant and can affect immune tooth surfaces, leading to extensive decay.
C. Clinical Implications
- Management: Requires comprehensive dental treatment, including restorative procedures and possibly extractions. Education on preventive measures and regular dental visits are essential to manage and prevent recurrence.
Caridex System
Caridex is a dental system designed for the treatment of root canals, utilizing the non-specific proteolytic effects of sodium hypochlorite (NaOCl) to aid in the cleaning and disinfection of the root canal system. Below is an overview of its components, mechanism of action, advantages, and drawbacks.
1. Components of Caridex
A. Caridex Solution I
- Composition:
- 0.1 M Butyric Acid
- 0.1 M Sodium Hypochlorite (NaOCl)
- 0.1 M Sodium Hydroxide (NaOH)
B. Caridex Solution II
- Composition:
- 1% Sodium Hypochlorite in a weak alkaline solution.
C. Delivery System
- Components:
- NaOCl Pump: Delivers the sodium hypochlorite solution.
- Heater: Maintains the temperature of the solution for optimal efficacy.
- Solution Reservoir: Holds the prepared solutions.
- Handpiece: Designed to hold the applicator tip for precise application.
2. Mechanism of Action
- Proteolytic Effect: The primary mechanism of action of Caridex is based on the non-specific proteolytic effect of sodium hypochlorite.
- Chlorination of Collagen: The N-monochloro-dl-2-aminobutyric acid (NMAB) component enhances the chlorination of degraded collagen in dentin.
- Conversion of Hydroxyproline: The hydroxyproline present in collagen is converted to pyrrole-2-carboxylic acid, which is part of the degradation process of dentin collagen.
3. pH and Application Time
- Resultant pH: The pH of the Caridex solution is approximately 12, which is alkaline and conducive to the disinfection process.
- Application Time: The recommended application time for Caridex is 20 minutes, allowing sufficient time for the solution to act on the root canal system.
4. Advantages
- Effective Disinfection: The use of sodium hypochlorite provides a strong antimicrobial effect, helping to eliminate bacteria and debris from the root canal.
- Collagen Degradation: The system's ability to degrade collagen can aid in the removal of organic material from the canal.
5. Drawbacks
- Low Efficiency: The overall effectiveness of the Caridex system may be limited compared to other modern endodontic cleaning solutions.
- Short Shelf Life: The components may have a limited shelf life, affecting their usability over time.
- Time and Volume: The system requires a significant volume of solution and a longer application time, which may not be practical in all clinical settings.
Various dyes have been tried to detect carious enamel, each having some Advantages and Disadvantages:
‘Procion’ dyes stain enamel lesions but the staining becomes irreversible because the dye reacts with nitrogen and hydroxyl groups of enamel and acts as a fixative.
‘Calcein’ dye makes a complex with calcium and remains bound to the lesion.
‘Fluorescent dye’ like Zyglo ZL-22 has been used in vitro which is not suitable in vivo. The dye is made visible by ultraviolet illumination.
‘Brilliant blue’ has also been used to enhance the diagnostic quality of fiberoptic transillumination.
Pouring the Final Impression
Technique
- Mixing Die Stone: A high-strength die stone is mixed using a vacuum mechanical mixer to ensure a homogenous mixture without air bubbles.
- Pouring Process:
- The die stone is poured into the impression using a vibrator and a No. 7 spatula.
- The first increments should be applied in small amounts, allowing the material to flow into the remote corners and angles of the preparation without trapping air.
- Surface Tension-Reducing Agents: These agents can be added to the die stone to enhance its flow properties, allowing it to penetrate deep into the internal corners of the impression.
Final Dimensions
- The impression should be filled sufficiently so that the dies will be approximately 15 to 20 mm tall occluso-gingivally after trimming. This height is important for the stability and accuracy of the final restoration.
Inlay Preparation
Inlay preparations are a common restorative procedure in dentistry, particularly for Class II restorations.
1. Definitions
A. Inlay
- An inlay is a restoration that is fabricated using an indirect procedure. It involves one or more tooth surfaces and may cap one or more cusps but does not cover all cusps.
2. Class II Inlay (Cast Metal) Preparation Procedure
A. Burs Used
- Recommended Burs:
- No. 271: For initial cavity preparation.
- No. 169 L: For refining the cavity shape and creating the proximal box.
B. Initial Cavity Preparation
- Similar to Class II Amalgam: The initial cavity
preparation is performed similarly to that for Class II amalgam
restorations, with the following differences:
- Occlusal Entry Cut Depth: The initial occlusal entry should be approximately 1.5 mm deep.
- Cavity Margins Divergence: All cavity margins must
diverge occlusally by 2-5 degrees:
- 2 degrees: When the vertical walls of the cavity are short.
- 5 degrees: When the vertical walls are long.
- Proximal Box Margins: The proximal box margins should clear the adjacent tooth by 0.2-0.5 mm, with 0.5 ± 0.2 mm being ideal.
C. Preparation of Bevels and Flares
- Primary and Secondary Flares:
- Flares are created on the facial and lingual proximal walls, forming the walls in two planes.
- The secondary flare widens the proximal box, which initially had a
clearance of 0.5 mm from the adjacent tooth. This results in:
- Marginal Metal in Embrasure Area: Placing the marginal metal in the embrasure area allows for better self-cleansing and easier access for cleaning and polishing without excessive dentin removal.
- Marginal Metal Angle: A 40-degree angle, which is easily burnishable and strong.
- Enamel Margin Angle: A 140-degree angle, which blunts the enamel margin and increases its strength.
- Note: Secondary flares are omitted on the mesiofacial proximal walls of maxillary premolars and first molars for esthetic reasons.
D. Gingival Bevels
- Width: Gingival bevels should be 0.5-1 mm wide and blend with the secondary flare, resulting in a marginal metal angle of 30 degrees.
- Purpose:
- Removal of weak enamel.
- Creation of a burnishable 30-degree marginal metal.
- Production of a lap sliding fit at the gingival margin.
E. Occlusal Bevels
- Location: Present on the cavosurface margins of the cavity on the occlusal surface.
- Width: Approximately 1/4th the depth of the respective wall, resulting in a marginal metal angle of 40 degrees.
3. Capping Cusps
A. Indications
- Cusp Involvement: Capping cusps is indicated when more than 1/2 of a cusp is involved and is mandatory when 2/3 or more is involved.
B. Advantages
- Weak Enamel Removal: Helps in removing weak enamel.
- Cavity Margin Location: Moves the cavity margin away from occlusal areas subjected to heavy forces.
- Visualization of Caries: Aids in visualizing the extent of caries, increasing convenience during preparation.
C. Cusp Reduction
- Uniform Metal Thickness: Cusp reduction must provide for a uniform 1.5 mm metal thickness over the reduced cusps.
- Facial Cusp Reduction: For maxillary premolars and first molars, the reduction of the facial cusp should be 0.75-1 mm for esthetic reasons.
D. Reverse Bevel (Counter Bevel)
- Definition: A bevel given on the margins of the reduced cusp.
- Width: Varies to extend beyond any occlusal contact with opposing teeth, resulting in a marginal metal angle of 30 degrees.
E. Retention Considerations
- Retention Form: Cusp reduction decreases the retention form due to reduced vertical wall height. Therefore, proximal retentive grooves are usually recommended.
- Collar and Skirt Features: These features can enhance retention and resistance form.