Talk to us?

Conservative Dentistry - NEETMDS- courses
NEET MDS Lessons
Conservative Dentistry

Incipient Lesions

Characteristics of Incipient Lesions

  • Body of the Lesion: The body of the incipient lesion is the largest portion during the demineralizing phase, characterized by varying pore volumes (5% at the periphery to 25% at the center).
  • Striae of Retzius: The striae of Retzius are well marked in the body of the lesion, indicating areas of preferential mineral dissolution. These striae represent the incremental growth lines of enamel and are critical in understanding caries progression.

Caries Penetration

  • Initial Penetration: The first penetration of caries occurs via the striae of Retzius, highlighting the importance of these structures in the carious process. Understanding this can aid in the development of preventive strategies and treatment plans aimed at early intervention and management of carious lesions.

Dental Burs

Dental burs are essential tools used in restorative dentistry for cutting, shaping, and finishing tooth structure. The design and characteristics of burs significantly influence their cutting efficiency, vibration, and overall performance. Below is a detailed overview of the key features and considerations related to dental burs.

1. Structure of Burs

A. Blades and Flutes

  • Blades: The cutting edges on a bur are uniformly spaced, and the number of blades is always even.
  • Flutes: The spaces between the blades are referred to as flutes. These flutes help in the removal of debris during cutting.

B. Cutting Action

  • Number of Blades:
    • Excavating Burs: Typically have 6-10 blades. These burs are designed for efficient removal of tooth structure.
    • Finishing Burs: Have 12-40 blades, providing a smoother finish to the tooth surface.
  • Cutting Efficiency:
    • A greater number of blades results in a smoother cutting action at low speeds.
    • However, as the number of blades increases, the space between subsequent blades decreases, which can reduce the overall cutting efficiency.

2. Vibration and RPM

A. Vibration

  • Cycles per Second: Vibrations over 1,300 cycles/second are generally imperceptible to patients.
  • Effect of Blade Number: Fewer blades on a bur tend to produce greater vibrations during use.
  • RPM Impact: Higher RPM (revolutions per minute) results in less amplitude and greater frequency of vibration, contributing to a smoother cutting experience.

3. Rake Angle

A. Definition

  • Rake Angle: The angle that the face of the blade makes with a radial line drawn from the center of the bur to the blade.

B. Cutting Efficiency

  • Positive Rake Angle: Generally preferred for cutting efficiency.
  • Radial Rake Angle: Intermediate efficiency.
  • Negative Rake Angle: Less efficient for cutting.
  • Clogging: Burs with a positive rake angle may experience clogging due to debris accumulation.

4. Clearance Angle

A. Definition

  • Clearance Angle: This angle provides necessary clearance between the working edge and the cutting edge of the bur, allowing for effective cutting without binding.

5. Run-Out

A. Definition

  • Run-Out: Refers to the eccentricity or maximum displacement of the bur head from its axis of rotation.
  • Acceptable Value: The average clinically acceptable run-out is about 0.023 mm. Excessive run-out can lead to uneven cutting and discomfort for the patient.

6. Load Applied by Dentist

A. Load Ranges

  • Low Speed: The load applied by the dentist typically ranges from 100 to 1500 grams.
  • High Speed: The load is generally lower, ranging from 60 to 120 grams.

7. Diamond Stones

A. Characteristics

  • Hardness: Diamond stones are the hardest and most efficient abrasive tools available for removing tooth enamel.
  • Application: They are commonly used for cutting and finishing procedures due to their superior cutting ability and durability.

Cariogram: Understanding Caries Risk

The Cariogram is a graphical representation developed by Brathall et al. in 1999 to illustrate the interaction of various factors contributing to the development of dental caries. This tool helps dental professionals and patients understand the multifactorial nature of caries and assess individual risk levels.

  • Purpose: The Cariogram visually represents the interplay between different factors that influence caries development, allowing for a comprehensive assessment of an individual's caries risk.
  • Structure: The Cariogram is depicted as a pie chart divided into five distinct sectors, each representing a specific contributing factor.

Sectors of the Cariogram

A. Green Sector: Chance to Avoid Caries

  • Description: This sector estimates the likelihood of avoiding caries based on the individual's overall risk profile.
  • Significance: A larger green area indicates a higher chance of avoiding caries, reflecting effective preventive measures and good oral hygiene practices.

B. Dark Blue Sector: Diet

  • Description: This sector assesses dietary factors, including the content and frequency of sugar consumption.
  • Components: It considers both the types of foods consumed (e.g., sugary snacks, acidic beverages) and how often they are eaten.
  • Significance: A smaller dark blue area suggests a diet that is less conducive to caries development, while a larger area indicates a higher risk due to frequent sugar intake.

C. Red Sector: Bacteria

  • Description: This sector evaluates the bacterial load in the mouth, particularly focusing on the amount of plaque and the presence of Streptococcus mutans.
  • Components: It takes into account the quantity of plaque accumulation and the specific types of bacteria present.
  • Significance: A larger red area indicates a higher bacterial presence, which correlates with an increased risk of caries.

D. Light Blue Sector: Susceptibility

  • Description: This sector reflects the individual's susceptibility to caries, influenced by factors such as fluoride exposure, saliva secretion, and saliva buffering capacity.
  • Components: It considers the effectiveness of fluoride programs, the volume of saliva produced, and the saliva's ability to neutralize acids.
  • Significance: A larger light blue area suggests greater susceptibility to caries, while a smaller area indicates protective factors are in place.

E. Yellow Sector: Circumstances

  • Description: This sector encompasses the individual's past caries experience and any related health conditions that may affect caries risk.
  • Components: It includes the history of previous caries, dental treatments, and systemic diseases that may influence oral health.
  • Significance: A larger yellow area indicates a higher risk based on past experiences and health conditions, while a smaller area suggests a more favorable history.

Clinical use of the Cariogram

A. Personalized Risk Assessment

  • The Cariogram provides a visual and intuitive way to assess an individual's caries risk, allowing for tailored preventive strategies based on specific factors.

B. Patient Education

  • By using the Cariogram, dental professionals can effectively communicate the multifactorial nature of caries to patients, helping them understand how their diet, oral hygiene, and other factors contribute to their risk.

C. Targeted Interventions

  • The information derived from the Cariogram can guide dental professionals in developing targeted interventions, such as dietary counseling, fluoride treatments, and improved oral hygiene practices.

D. Monitoring Progress

  • The Cariogram can be used over time to monitor changes in an individual's caries risk profile, allowing for adjustments in preventive strategies as needed.

Light-Cure Composites

Light-cure composites are resin-based materials that harden when exposed to specific wavelengths of light. They are widely used in dental restorations due to their aesthetic properties, ease of use, and ability to bond to tooth structure.

Key Components:

  • Diketone Photoinitiator: The primary photoinitiator used in light-cure composites is camphoroquinone. This compound plays a crucial role in the polymerization process.
  • Visible Light Spectrum: The curing process is activated by blue light, typically in the range of 400-500 nm.

2. Curing Lamps: Halogen Bulbs and QTH Lamps

Halogen Bulbs

  • Efficiency: Halogen bulbs maintain a constant blue light efficiency for approximately 100 hours under normal use. This consistency is vital for reliable curing of dental composites.
  • Step Curing: Halogen lamps allow for a technique known as step curing, where the composite is first cured at a lower energy level and then stepped up to higher energy levels. This method can enhance the properties of the cured material.

Quartz Tungsten Halogen (QTH) Curing Lamps

  • Irradiance Requirements: To adequately cure a 2 mm thick specimen of resin-based composite, an irradiance value of at least 300 mW/cm² to 400 mW/cm² is necessary. This ensures that the light penetrates the composite effectively.
  • Micro-filled vs. Hybrid Composites: Micro-filled composites require twice the irradiance value compared to hybrid composites. This is due to their unique composition and light transmission properties.

3. Mechanism of Visible Light Curing

The curing process involves several key steps:

Photoinitiation

  • Absorption of Light: When camphoroquinone absorbs blue light in the 400-500 nm range, it becomes excited and forms free radicals.
  • Free Radical Formation: These free radicals are essential for initiating the polymerization process, leading to the hardening of the composite material.

Polymerization

  • Chain Reaction: The free radicals generated initiate a chain reaction that links monomers together, forming a solid polymer network.
  • Maximum Absorption: The maximum absorption wavelength of camphoroquinone is at 468 nm, which is optimal for effective curing.

4. Practical Considerations in Curing

Curing Depth

  • The depth of cure is influenced by the type of composite used, the thickness of the layer, and the irradiance of the light source. It is crucial to ensure that the light penetrates adequately to achieve a complete cure.

Operator Technique

  • Proper technique in positioning the curing light and ensuring adequate exposure time is essential for achieving optimal results. Inadequate curing can lead to compromised mechanical properties and increased susceptibility to wear and staining.

Recent Advances in Restorative Dentistry

Restorative dentistry has seen significant advancements in materials and techniques that enhance the effectiveness, efficiency, and aesthetic outcomes of dental treatments. Below are some of the notable recent innovations in restorative dentistry:

1. Teric Evoflow

A. Description

  • Type: Nano-optimized flow composite.
  • Characteristics:
    • Optimum Surface Affinity: Designed to adhere well to tooth surfaces.
    • Penetration: Capable of penetrating into areas that are difficult to reach, making it ideal for various restorative applications.

B. Applications

  • Class V Restorations: Particularly suitable for Class V cavities, which are often challenging due to their location and shape.
  • Extended Fissure Sealing: Effective for sealing deep fissures in teeth to prevent caries.
  • Adhesive Cementation Techniques: Can be used as an initial layer under medium-viscosity composites, enhancing the overall bonding and restoration process.

2. GO

A. Description

  • Type: Super quick adhesive.
  • Characteristics:
    • Time Efficiency: Designed to save valuable chair time during dental procedures.
    • Ease of Use: Fast application process, allowing for quicker restorations without compromising quality.

B. Applications

  • Versatile Use: Suitable for various adhesive applications in restorative dentistry, enhancing workflow efficiency.

3. New Optidisc

A. Description

  • Type: Finishing and polishing discs.
  • Characteristics:
    • Three-Grit System: Utilizes a three-grit system instead of the traditional four, aimed at achieving a higher surface gloss on restorations.
    • Extra Coarse Disc: An additional extra coarse disc is available for gross removal of material before the finishing and polishing stages.

B. Applications

  • Final Polish: Allows restorations to achieve a final polish that closely resembles the natural dentition, improving aesthetic outcomes and patient satisfaction.

4. Interval II Plus

A. Description

  • Type: Temporary filling material.
  • Composition: Made with glass ionomer and leachable fluoride.
  • Packaging: Available in a convenient 5 gm syringe.

B. Characteristics

  • Dependable: A one-component, ready-mixed material that simplifies the application process.
  • Safety: Safe to use on resin-based materials, as it does not contain zinc oxide eugenol (ZOE), which can interfere with bonding.

C. Applications

  • Temporary Restorations: Ideal for use in temporary fillings, providing a reliable and effective solution for managing carious lesions until permanent restorations can be placed.

Nursing Bottle Caries

Nursing bottle caries, also known as early childhood caries (ECC), is a significant dental issue that affects infants and young children. Understanding the etiological agents involved in this condition is crucial for prevention and management. .

1. Pathogenic Microorganism

A. Streptococcus mutans

  • RoleStreptococcus mutans is the primary microorganism responsible for the development of nursing bottle caries. It colonizes the teeth after they erupt into the oral cavity.
  • Transmission: This bacterium is typically transmitted to the infant’s mouth from the mother, often through saliva.
  • Virulence Factors:
    • Colonization: It effectively adheres to tooth surfaces, establishing a foothold for caries development.
    • Acid ProductionS. mutans produces large amounts of acid as a byproduct of carbohydrate fermentation, leading to demineralization of tooth enamel.
    • Extracellular Polysaccharides: It synthesizes significant quantities of extracellular polysaccharides, which promote plaque formation and enhance bacterial adherence to teeth.

2. Substrate (Fermentable Carbohydrates)

A. Sources of Fermentable Carbohydrates

  • Fermentable carbohydrates are utilized by S. mutans to form dextrans, which facilitate bacterial adhesion to tooth surfaces and contribute to acid production. Common sources include:
    • Bovine Milk or Milk Formulas: Often high in lactose, which can be fermented by bacteria.
    • Human Milk: Breastfeeding on demand can expose teeth to sugars.
    • Fruit Juices and Sweet Liquids: These are often high in sugars and can contribute to caries.
    • Sweet Syrups: Such as those found in vitamin preparations.
    • Pacifiers Dipped in Sugary Solutions: This practice can introduce sugars directly to the oral cavity.
    • Chocolates and Other Sweets: These can provide a continuous source of fermentable carbohydrates.

3. Host Factors

A. Tooth Structure

  • Host for Microorganisms: The tooth itself serves as the host for S. mutans and other cariogenic bacteria.
  • Susceptibility Factors:
    • Hypomineralization or Hypoplasia: Defects in enamel development can increase susceptibility to caries.
    • Thin Enamel and Developmental Grooves: These anatomical features can create areas that are more prone to plaque accumulation and caries.

4. Time

A. Duration of Exposure

  • Sleeping with a Bottle: The longer a child sleeps with a bottle in their mouth, the higher the risk of developing caries. This is due to:
    • Decreased Salivary Flow: Saliva plays a crucial role in neutralizing acids and washing away food particles.
    • Prolonged Carbohydrate Accumulation: The swallowing reflex is diminished during sleep, allowing carbohydrates to remain in the mouth longer.

5. Other Predisposing Factors

  • Parental Overindulgence: Excessive use of sugary foods and drinks can increase caries risk.
  • Sleep Patterns: Children who sleep less may have increased exposure to cariogenic factors.
  • Malnutrition: Nutritional deficiencies can affect oral health and increase susceptibility to caries.
  • Crowded Living Conditions: These may limit access to dental care and hygiene practices.
  • Decreased Salivary Function: Conditions such as iron deficiency and exposure to lead can impair salivary function, increasing caries susceptibility.

Clinical Features of Nursing Bottle Caries

  • Intraoral Decay Pattern: The decay pattern associated with nursing bottle caries is characteristic and pathognomonic, often involving the maxillary incisors and molars.
  • Progression of Lesions: Lesions typically progress rapidly, leading to extensive decay if not addressed promptly.

Management of Nursing Bottle Caries

First Visit

  • Lesion Management: Excavation and restoration of carious lesions.
  • Abscess Drainage: If present, abscesses should be drained.
  • Radiographs: Obtain necessary imaging to assess the extent of caries.
  • Diet Chart: Provide a diet chart for parents to record the child's diet for one week.
  • Parent Counseling: Educate parents on oral hygiene and dietary practices.
  • Topical Fluoride: Administer topical fluoride to strengthen enamel.

Second Visit

  • Diet Analysis: Review the diet chart with the parents.
  • Sugar Control: Identify and isolate sugar sources in the diet and provide instructions to control sugar exposure.
  • Caries Activity Tests: Conduct tests to assess the activity of carious lesions.

Third Visit

  • Endodontic Treatment: If necessary, perform root canal treatment on affected teeth.
  • Extractions: Remove any non-restorable teeth, followed by space maintenance if needed.
  • Crowns: Place crowns on teeth that require restoration.
  • Recall Schedule: Schedule follow-up visits every three months to monitor progress and maintain oral health.

Ariston pHc Alkaline Glass Restorative

Ariston pHc is a notable dental restorative material developed by Ivoclar Vivadent in 1990. This innovative material is designed to provide both restorative and preventive benefits, particularly in the management of dental caries.

1. Introduction

  • Manufacturer: Ivoclar Vivadent (Liechtenstein)
  • Year of Introduction: 1990

2. Key Features

A. Ion Release Mechanism

  • Fluoride, Hydroxide, and Calcium Ions: Ariston pHc releases fluoride, hydroxide, and calcium ions when the pH within the restoration falls to critical levels. This release occurs in response to acidic conditions that can lead to enamel and dentin demineralization.

B. Acid Neutralization

  • Counteracting Decalcification: The ions released by Ariston pHc help neutralize acids in the oral environment, effectively counteracting the decalcification of both enamel and dentin. This property is particularly beneficial in preventing further carious activity around the restoration.

3. Material Characteristics

A. Light-Activated

  • Curing Method: Ariston pHc is a light-activated material, allowing for controlled curing and setting. This feature enhances the ease of use and application in clinical settings.

B. Bulk Thickness

  • Curing Depth: The material can be cured in bulk thicknesses of up to 4 mm, making it suitable for various cavity preparations, including larger restorations.

4. Indications for Use

A. Recommended Applications

  • Class I and II Lesions: Ariston pHc is recommended for use in Class I and II lesions in both deciduous (primary) and permanent teeth. Its properties make it particularly effective in managing carious lesions in children and adults.

5. Clinical Benefits

A. Preventive Properties

  • Remineralization Support: The release of fluoride and calcium ions not only helps in neutralizing acids but also supports the remineralization of adjacent tooth structures, enhancing the overall health of the tooth.

B. Versatility

  • Application in Various Situations: The ability to cure in bulk and its compatibility with different cavity classes make Ariston pHc a versatile choice for dental practitioners.

Explore by Exams