Talk to us?

Conservative Dentistry - NEETMDS- courses
NEET MDS Lessons
Conservative Dentistry

Beveled Conventional Preparation

Characteristics

  • External Walls: In a beveled conventional preparation, the external walls are perpendicular to the enamel surface.
  • Beveled Margin: The enamel margin is beveled, which helps to create a smooth transition between the restoration and the tooth structure.

Benefits

  • Improved Aesthetics: The beveling technique enhances the aesthetics of the restoration by minimizing the visibility of the margin.
  • Strength and Bonding: Beveling can improve the bonding surface area and reduce the risk of marginal leakage, which is critical for the longevity of the restoration.

Nursing Caries and Rampant Caries

Nursing caries and rampant caries are both forms of dental caries that can lead to significant oral health issues, particularly in children.

Nursing Caries

  • Nursing Caries: A specific form of rampant caries that primarily affects infants and toddlers, characterized by a distinct pattern of decay.

Age of Occurrence

  • Age Group: Typically seen in infants and toddlers, particularly those who are bottle-fed or breastfed on demand.

Dentition Involved

  • Affected Teeth: Primarily affects the primary dentition, especially the maxillary incisors and molars. Notably, the mandibular incisors are usually spared.

Characteristic Features

  • Decay Pattern:
    • Involves maxillary incisors first, followed by molars.
    • Mandibular incisors are not affected due to protective factors.
  • Rapid Lesion Development: New lesions appear quickly, indicating acute decay rather than chronic neglect.

Etiology

  • Feeding Practices:
    • Improper feeding practices are the primary cause, including:
      • Bottle feeding before sleep.
      • Pacifiers dipped in honey or other sweeteners.
      • Prolonged at-will breastfeeding.

Treatment

  • Early Detection: If detected early, nursing caries can be managed with:
    • Topical fluoride applications.
    • Education for parents on proper feeding and oral hygiene.
  • Maintenance: Focus on maintaining teeth until the transition to permanent dentition occurs.

Prevention

  • Education: Emphasis on educating prospective and new mothers about proper feeding practices and oral hygiene to prevent nursing caries.

Rampant Caries

  • Rampant Caries: A more generalized and acute form of caries that can occur at any age, characterized by widespread decay and early pulpal involvement.

Age of Occurrence

  • Age Group: Can be seen at all ages, including adolescence and adulthood.

Dentition Involved

  • Affected Teeth: Affects both primary and permanent dentition, including teeth that are typically resistant to decay.

Characteristic Features

  • Decay Pattern:
    • Involves surfaces that are usually immune to decay, including mandibular incisors.
    • Rapid appearance of new lesions, indicating a more aggressive form of caries.

Etiology

  • Multifactorial Causes: Rampant caries is influenced by a combination of factors, including:
    • Frequent snacking and excessive intake of sticky refined carbohydrates.
    • Decreased salivary flow.
    • Genetic predisposition.

Treatment

  • Pulp Therapy:
    • Often requires more extensive treatment, including pulp therapy for teeth with multiple pulp exposures.
    • Long-term treatment may be necessary, especially when permanent dentition is involved.

Prevention

  • Mass Education: Dental health education should be provided at a community level, targeting individuals of all ages to promote good oral hygiene and dietary practices.

Key Differences

Mandibular Anterior Teeth

  • Nursing Caries: Mandibular incisors are spared due to:
    1. Protection from the tongue.
    2. Cleaning action of saliva, aided by the proximity of the sublingual gland ducts.
  • Rampant Caries: Mandibular incisors can be affected, as this condition does not spare teeth that are typically resistant to decay.

Biologic Width and Drilling Speeds

In restorative dentistry, understanding the concepts of biologic width and the appropriate drilling speeds is essential for ensuring successful outcomes and maintaining periodontal health.

1. Biologic Width

Definition

  • Biologic Width: The biologic width is the area of soft tissue that exists between the crest of the alveolar bone and the gingival margin. It is crucial for maintaining periodontal health and stability.
  • Dimensions: The biologic width is ideally approximately 3 mm wide and consists of:
    • 1 mm of Connective Tissue: This layer provides structural support and attachment to the tooth.
    • 1 mm of Epithelial Attachment: This layer forms a seal around the tooth, preventing the ingress of bacteria and other irritants.
    • 1 mm of Gingival Sulcus: This is the space between the tooth and the gingiva, which is typically filled with gingival crevicular fluid.

Importance

  • Periodontal Health: The integrity of the biologic width is essential for the health of the periodontal attachment apparatus. If this zone is compromised, it can lead to periodontal inflammation and other complications.

Consequences of Violation

  • Increased Risk of Inflammation: If a restorative procedure violates the biologic width (e.g., by placing a restoration too close to the bone), there is a higher likelihood of periodontal inflammation.
  • Apical Migration of Attachment: Violation of the biologic width can cause the attachment apparatus to move apically, leading to loss of attachment and potential periodontal disease.

2. Recommended Drilling Speeds

Drilling Speeds

  • Ultra Low Speed: The recommended speed for drilling channels is between 300-500 rpm.
  • Low Speed: A speed of 1000 rpm is also considered low speed for certain procedures.

Heat Generation

  • Minimal Heat Production: At these low speeds, very little heat is generated during the drilling process. This is crucial for:
    • Preventing Thermal Damage: Low heat generation reduces the risk of thermal damage to the tooth structure and surrounding tissues.
    • Avoiding Pulpal Irritation: Excessive heat can lead to pulpal irritation or necrosis, which can compromise the health of the tooth.

Cooling Requirements

  • No Cooling Required: Because of the minimal heat generated at these speeds, additional cooling with water or air is typically not required. This simplifies the procedure and reduces the complexity of the setup.

Tooth Deformation Under Load

Biomechanical Properties of Teeth

  • Deformation (Strain): Teeth are not rigid structures; they undergo deformation (strain) during normal loading. This deformation is a natural response to the forces applied during chewing and other functional activities.
  • Intraoral Loads: The loads experienced by teeth can vary widely, with reported forces ranging from 10 to 431 N (1 N = 0.225 lb of force). A functional load of approximately 70 N is considered clinically normal.

Factors Influencing Load Distribution

  • Number of Teeth: The total number of teeth in the arch affects how forces are distributed. More teeth can share the load, reducing the stress on individual teeth.
  • Type of Occlusion: The occlusal relationship (how the upper and lower teeth come together) influences how forces are transmitted through the dental arch.
  • Occlusal Habits: Habits such as bruxism (teeth grinding) can significantly increase the forces applied to individual teeth, leading to greater strain and potential damage.

Clinical Implications

  • Restorative Considerations: Understanding the biomechanical behavior of teeth under load is essential for designing restorations that can withstand functional forces without failure.
  • Patient Management: Awareness of occlusal habits, such as bruxism, can guide clinicians in developing appropriate treatment plans, including the use of occlusal splints or other interventions to protect teeth from excessive forces.

Amorphous Calcium Phosphate (ACP)

Amorphous Calcium Phosphate (ACP) is a significant compound in dental materials and oral health, known for its role in the biological formation of hydroxyapatite, the primary mineral component of tooth enamel and bone. ACP has both preventive and restorative applications in dentistry, making it a valuable material for enhancing oral health.

1. Biological Role

A. Precursor to Hydroxyapatite

  • Formation: ACP serves as an antecedent in the biological formation of hydroxyapatite (HAP), which is essential for the mineralization of teeth and bones.
  • Conversion: At neutral to high pH levels, ACP remains in its original amorphous form. However, when exposed to low pH conditions (pH < 5-8), ACP converts into hydroxyapatite, helping to replace the HAP lost due to acidic demineralization.

2. Properties of ACP

A. pH-Dependent Behavior

  • Neutral/High pH: At neutral or high pH levels, ACP remains stable and does not dissolve.
  • Low pH: When the pH drops below 5-8, ACP begins to dissolve, releasing calcium (Ca²⁺) and phosphate (PO₄³⁻) ions. This process is crucial in areas where enamel demineralization has occurred due to acid exposure.

B. Smart Material Characteristics

ACP is often referred to as a "smart material" due to its unique properties:

  • Targeted Release: ACP releases calcium and phosphate ions specifically at low pH levels, which is when the tooth is at risk of demineralization.
  • Acid Neutralization: The released calcium and phosphate ions help neutralize acids in the oral environment, effectively buffering the pH and reducing the risk of further enamel erosion.
  • Reinforcement of Natural Defense: ACP reinforces the tooth’s natural defense system by providing essential minerals only when they are needed, thus promoting remineralization.
  • Longevity: ACP has a long lifespan in the oral cavity and does not wash out easily, making it effective for sustained protection.

3. Applications in Dentistry

A. Preventive Applications

  • Remineralization: ACP is used in various dental products, such as toothpaste and mouth rinses, to promote the remineralization of early carious lesions and enhance enamel strength.
  • Fluoride Combination: ACP can be combined with fluoride to enhance its effectiveness in preventing caries and promoting remineralization.

B. Restorative Applications

  • Dental Materials: ACP is incorporated into restorative materials, such as composites and sealants, to improve their mechanical properties and provide additional protection against caries.
  • Cavity Liners and Bases: ACP can be used in cavity liners and bases to promote healing and remineralization of the underlying dentin.

Pit and Fissure Sealants

Pit and fissure sealants are preventive dental materials applied to the occlusal surfaces of teeth to prevent caries in the pits and fissures. These sealants work by filling in the grooves and depressions on the tooth surface, thereby eliminating the sheltered environment where bacteria can thrive and cause decay.

Classification

Mitchell and Gordon (1990) classified pit and fissure sealants based on their composition and properties. While the specific classification details are not provided in the prompt, sealants can generally be categorized into:

  1. Resin-Based Sealants: These are the most common type, made from composite resins that provide good adhesion and durability.
  2. Glass Ionomer Sealants: These sealants release fluoride and bond chemically to the tooth structure, providing additional protection against caries.
  3. Polyacid-Modified Resin Sealants: These combine properties of both resin and glass ionomer sealants, offering improved adhesion and fluoride release.

Requisites of an Efficient Sealant

For a pit and fissure sealant to be effective, it should possess the following characteristics:

  • Viscosity: The sealant should be viscous enough to penetrate deep into pits and fissures.
  • Adequate Working Time: Sufficient time for application and manipulation before curing.
  • Low Sorption and Solubility: The material should have low water sorption and solubility to maintain its integrity in the oral environment.
  • Rapid Cure: Quick curing time to allow for efficient application and patient comfort.
  • Good Adhesion: Strong and prolonged adhesion to enamel to prevent microleakage.
  • Wear Resistance: The sealant should withstand the forces of mastication without wearing away.
  • Minimum Tissue Irritation: The material should be biocompatible and cause minimal irritation to oral tissues.
  • Cariostatic Action: Ideally, the sealant should have properties that inhibit the growth of caries-causing bacteria.

Indications for Use

Pit and fissure sealants are indicated in the following situations:

  • Newly Erupted Teeth: Particularly primary molars and permanent premolars and molars that have recently erupted (within the last 4 years).
  • Open or Sticky Pits and Fissures: Teeth with pits and fissures that are not well coalesced and may trap food particles.
  • Stained Pits and Fissures: Teeth with stained pits and fissures showing minimal decalcification.

Contraindications for Use

Pit and fissure sealants should not be used in the following situations:

  • No Previous Caries Experience: Teeth that have no history of caries and have well-coalesced pits and fissures.
  • Self-Cleansable Pits and Fissures: Wide pits and fissures that can be effectively cleaned by normal oral hygiene.
  • Caries-Free for Over 4 Years: Teeth that have been caries-free for more than 4 years.
  • Proximal Caries: Presence of caries on proximal surfaces, either clinically or radiographically.
  • Partially Erupted Teeth: Teeth that cannot be adequately isolated during the sealing process.

Key Points for Sealant Application

Age Range for Sealant Application

  • 3-4 Years of Age: Application is recommended for newly erupted primary molars.
  • 6-7 Years of Age: First permanent molars typically erupt during this age, making them prime candidates for sealant application.
  • 11-13 Years of Age: Second permanent molars and premolars should be considered for sealants as they erupt.

Bases in Restorative Dentistry

Bases are an essential component in restorative dentistry, serving as a thicker layer of material placed beneath restorations to provide additional protection and support to the dental pulp and surrounding structures. Below is an overview of the characteristics, objectives, and types of bases used in dental practice.

1. Characteristics of Bases

A. Thickness

  • Typical Thickness: Bases are generally thicker than liners, typically ranging from 1 to 2 mm. Some bases may be around 0.5 to 0.75 mm thick.

B. Functions

  • Thermal Protection: Bases provide thermal insulation to protect the pulp from temperature changes that can occur during and after the placement of restorations.
  • Mechanical Support: They offer supplemental mechanical support for the restoration by distributing stress on the underlying dentin surface. This is particularly important during procedures such as amalgam condensation, where forces can be applied to the restoration.

2. Objectives of Using Bases

The choice of base material and its application depend on the Remaining Dentin Thickness (RDT), which is a critical factor in determining the need for a base:

  • RDT > 2 mm: No base is required, as there is sufficient dentin to protect the pulp.
  • RDT 0.5 - 2 mm: A base is indicated, and the choice of material depends on the restorative material being used.
  • RDT < 0.5 mm: Calcium hydroxide (Ca(OH)₂) or Mineral Trioxide Aggregate (MTA) should be used to promote the formation of reparative dentin, as the remaining dentin is insufficient to provide adequate protection.

3. Types of Bases

A. Common Base Materials

  • Zinc Phosphate (ZnPO₄): Known for its good mechanical properties and thermal insulation.
  • Glass Ionomer Cement (GIC): Provides thermal protection and releases fluoride, which can help in preventing caries.
  • Zinc Polycarboxylate: Offers good adhesion to tooth structure and provides thermal insulation.

B. Properties

  • Mechanical Protection: Bases distribute stress effectively, reducing the risk of fracture in the restoration and protecting the underlying dentin.
  • Thermal Insulation: Bases are poor conductors of heat and cold, helping to maintain a stable temperature at the pulp level.

Explore by Exams