NEET MDS Lessons
Conservative Dentistry
Liners
Liners are relatively thin layers of material applied to the cavity preparation to protect the dentin from potential irritants and to provide a barrier against oral fluids and residual reactants from the restoration.
Types of Liners
1. Solution Liners
- Composition: Based on non-aqueous solutions of acetone, alcohol, or ether.
- Example: Varnish (e.g., Copal Wash).
- Composition:
- 10% copal resin
- 90% solvent
- Composition:
- Setting Reaction: Physical evaporation of the solvent, leaving a thin film of copal resin.
- Coverage: A single layer of varnish covers approximately 55% of the surface area. Applying 2-3 layers can increase coverage to 60-80%.
2. Suspension Liners
- Composition: Based on aqueous solvents (water-based).
- Example: Calcium hydroxide (Ca(OH)₂) liner.
- Indications: Used to protect dentinal tubules and provide a barrier against irritants.
- Disadvantage: High solubility in oral fluids, which can limit effectiveness over time.
3. Importance of Liners
A. Smear Layer
- The smear layer, which forms during cavity preparation, can decrease dentin permeability by approximately 86%, providing an additional protective barrier for the pulp.
B. Pulp Medication
- Liners can serve an important function in pulp medication, which helps prevent pulpal inflammation and promotes healing. This is particularly crucial in cases where the cavity preparation is close to the pulp.
Amalgam Bonding Agents
Amalgam bonding agents can be classified into several categories based on their composition and mechanism of action:
A. Adhesive Systems
- Total-Etch Systems: These systems involve etching both enamel and dentin with phosphoric acid to create a rough surface that enhances mechanical retention. After etching, a bonding agent is applied to the prepared surface before the amalgam is placed.
- Self-Etch Systems: These systems combine etching and bonding in one step, using acidic monomers that partially demineralize the tooth surface while simultaneously promoting bonding. They are less technique-sensitive than total-etch systems.
B. Glass Ionomer Cements
- Glass ionomer cements can be used as a base or liner under amalgam restorations. They bond chemically to both enamel and dentin, providing a good seal and some degree of fluoride release, which can help in caries prevention.
C. Resin-Modified Glass Ionomers
- These materials combine the properties of glass ionomer cements with added resins to improve their mechanical properties and bonding capabilities. They can be used as a liner or base under amalgam restorations.
Mechanism of Action
A. Mechanical Retention
- Amalgam bonding agents create a roughened surface on the tooth structure, which increases the surface area for mechanical interlocking between the amalgam and the tooth.
B. Chemical Bonding
- Some bonding agents form chemical bonds with the tooth structure, particularly with dentin. This chemical interaction can enhance the overall retention of the amalgam restoration.
C. Sealing the Interface
- By sealing the interface between the amalgam and the tooth, bonding agents help prevent microleakage, which can lead to secondary caries and postoperative sensitivity.
Applications of Amalgam Bonding Agents
A. Sealing Tooth Preparations
- Bonding agents are used to seal the cavity preparation before the placement of amalgam, reducing the risk of microleakage and enhancing the longevity of the restoration.
B. Bonding New to Old Amalgam
- When repairing or replacing an existing amalgam restoration, bonding agents can be used to bond new amalgam to the old amalgam, improving the overall integrity of the restoration.
C. Repairing Marginal Defects
- Bonding agents can be applied to repair marginal defects in amalgam restorations, helping to restore the seal and prevent further deterioration.
Clinical Considerations
A. Technique Sensitivity
- The effectiveness of amalgam bonding agents can be influenced by the technique used during application. Proper surface preparation, including cleaning and drying the tooth structure, is essential for optimal bonding.
B. Moisture Control
- Maintaining a dry field during the application of bonding agents is critical. Moisture contamination can compromise the bond strength and lead to restoration failure.
C. Material Compatibility
- It is important to ensure compatibility between the bonding agent and the amalgam used. Some bonding agents may not be suitable for all types of amalgam, so clinicians should follow manufacturer recommendations.
D. Longevity and Performance
- While amalgam bonding agents can enhance the performance of amalgam restorations, their long-term effectiveness can vary. Regular monitoring of restorations is essential to identify any signs of failure or degradation.
Wedging Techniques
Various wedging methods are employed to achieve optimal results, especially in cases involving gingival recession or wide proximal boxes. Below are descriptions of different wedging techniques, including "piggy back" wedging, double wedging, and wedge wedging.
1. Piggy Back Wedging
A. Description
- Technique: In piggy back wedging, a second smaller wedge is placed on top of the first wedge.
- Indication: This technique is particularly useful in patients with gingival recession, where there is a risk of overhanging restoration margins that could irritate the gingiva.
B. Purpose
- Prevention of Gingival Overhang: The additional wedge helps to ensure that the restoration does not extend beyond the tooth surface into the gingival area, thereby preventing potential irritation and maintaining periodontal health.
2. Double Wedging
A. Description
- Technique: In double wedging, wedges are placed from both the lingual and facial surfaces of the tooth.
- Indication: This method is beneficial in cases where the proximal box is wide, providing better adaptation of the matrix band and ensuring a tighter seal.
B. Purpose
- Enhanced Stability: By using wedges from both sides, the matrix band is held securely in place, reducing the risk of material leakage and improving the overall quality of the restoration.
3. Wedge Wedging
A. Description
- Technique: In wedge wedging, a second wedge is inserted between the first wedge and the matrix band, particularly in specific anatomical situations.
- Indication: This technique is commonly used in the maxillary first premolar, where a mesial concavity may complicate the placement of the matrix band.
B. Purpose
- Improved Adaptation: The additional wedge helps to fill the space created by the mesial concavity, ensuring that the matrix band conforms closely to the tooth surface and providing a better seal for the restorative material.
Cariogram: A Visual Tool for Understanding Caries Risk
The Cariogram is a graphical representation developed by Brathall et al. in 1999 to illustrate the interaction of various factors contributing to the development of dental caries. This tool helps dental professionals and patients understand the multifactorial nature of caries and assess individual risk levels.
1. Overview of the Cariogram
- Purpose: The Cariogram visually represents the interplay between different factors that influence caries development, allowing for a comprehensive assessment of an individual's caries risk.
- Structure: The Cariogram is depicted as a pie chart divided into five distinct sectors, each representing a specific contributing factor.
2. Sectors of the Cariogram
A. Green Sector: Chance to Avoid Caries
- Description: This sector estimates the likelihood of avoiding caries based on the individual's overall risk profile.
- Significance: A larger green area indicates a higher chance of avoiding caries, reflecting effective preventive measures and good oral hygiene practices.
B. Dark Blue Sector: Diet
- Description: This sector assesses dietary factors, including the content and frequency of sugar consumption.
- Components: It considers both the types of foods consumed (e.g., sugary snacks, acidic beverages) and how often they are eaten.
- Significance: A smaller dark blue area suggests a diet that is less conducive to caries development, while a larger area indicates a higher risk due to frequent sugar intake.
C. Red Sector: Bacteria
- Description: This sector evaluates the bacterial load in the mouth, particularly focusing on the amount of plaque and the presence of Streptococcus mutans.
- Components: It takes into account the quantity of plaque accumulation and the specific types of bacteria present.
- Significance: A larger red area indicates a higher bacterial presence, which correlates with an increased risk of caries.
D. Light Blue Sector: Susceptibility
- Description: This sector reflects the individual's susceptibility to caries, influenced by factors such as fluoride exposure, saliva secretion, and saliva buffering capacity.
- Components: It considers the effectiveness of fluoride programs, the volume of saliva produced, and the saliva's ability to neutralize acids.
- Significance: A larger light blue area suggests greater susceptibility to caries, while a smaller area indicates protective factors are in place.
E. Yellow Sector: Circumstances
- Description: This sector encompasses the individual's past caries experience and any related health conditions that may affect caries risk.
- Components: It includes the history of previous caries, dental treatments, and systemic diseases that may influence oral health.
- Significance: A larger yellow area indicates a higher risk based on past experiences and health conditions, while a smaller area suggests a more favorable history.
3. Clinical Implications of the Cariogram
A. Personalized Risk Assessment
- The Cariogram provides a visual and intuitive way to assess an individual's caries risk, allowing for tailored preventive strategies based on specific factors.
B. Patient Education
- By using the Cariogram, dental professionals can effectively communicate the multifactorial nature of caries to patients, helping them understand how their diet, oral hygiene, and other factors contribute to their risk.
C. Targeted Interventions
- The information derived from the Cariogram can guide dental professionals in developing targeted interventions, such as dietary counseling, fluoride treatments, and improved oral hygiene practices.
D. Monitoring Progress
- The Cariogram can be used over time to monitor changes in an individual's caries risk profile, allowing for adjustments in preventive strategies as needed.
Fillers in Conservative Dentistry
Fillers play a crucial role in the formulation of composite resins used in conservative dentistry. They are inorganic materials added to the organic matrix to enhance the physical and mechanical properties of the composite. The size and type of fillers significantly influence the performance of the composite material.
1. Types of Fillers Based on Particle Size
Fillers can be categorized based on their particle size, which affects their properties and applications:
- Macrofillers: 10 - 100 µm
- Midi Fillers: 1 - 10 µm
- Minifillers: 0.1 - 1 µm
- Microfillers: 0.01 - 0.1 µm
- Nanofillers: 0.001 - 0.01 µm
2. Composition of Fillers
The dispersed phase of composite resins is primarily made up of inorganic filler materials. Commonly used fillers include:
- Silicon Dioxide
- Boron Silicates
- Lithium Aluminum Silicates
A. Silanization
- Filler particles are often silanized to enhance bonding between the hydrophilic filler and the hydrophobic resin matrix. This process improves the overall performance and durability of the composite.
3. Effects of Filler Addition
The incorporation of fillers into composite resins leads to several beneficial effects:
- Reduces Thermal Expansion Coefficient: Enhances dimensional stability.
- Reduces Polymerization Shrinkage: Minimizes the risk of gaps between the restoration and tooth structure.
- Increases Abrasion Resistance: Improves the wear resistance of the restoration.
- Decreases Water Sorption: Reduces the likelihood of degradation over time.
- Increases Tensile and Compressive Strengths: Enhances the mechanical properties, making the restoration more durable.
- Increases Fracture Toughness: Improves the ability of the material to resist crack propagation.
- Increases Flexural Modulus: Enhances the stiffness of the composite.
- Provides Radiopacity: Allows for better visualization on radiographs.
- Improves Handling Properties: Enhances the workability of the composite during application.
- Increases Translucency: Improves the aesthetic appearance of the restoration.
4. Alternative Fillers
In some composite formulations, quartz is partially replaced with heavy metal particles such as:
- Zinc
- Aluminum
- Barium
- Strontium
- Zirconium
A. Calcium Metaphosphate
- Recently, calcium metaphosphate has been explored as a filler due to its favorable properties.
B. Wear Considerations
- These alternative fillers are generally less hard than traditional glass fillers, resulting in less wear on opposing teeth.
5. Nanoparticles in Composites
Recent advancements have introduced nanoparticles into composite formulations:
- Nanoparticles: Typically around 25 nm in size.
- Nanoaggregates: Approximately 75 nm, made from materials like zirconium/silica or nano-silica particles.
A. Benefits of Nanofillers
- The smaller size of these filler particles results in improved surface finish and polishability of the restoration, enhancing both aesthetics and performance.
Onlay Preparation
Onlay preparations are a type of indirect restoration used to restore teeth that have significant loss of structure but still retain enough healthy tooth structure to support a restoration. Onlays are designed to cover one or more cusps of a tooth and are often used when a full crown is not necessary.
1. Definition of Onlay
A. Onlay
- An onlay is a restoration that is fabricated using an indirect procedure, covering one or more cusps of a tooth. It is designed to restore the tooth's function and aesthetics while preserving as much healthy tooth structure as possible.
2. Indications for Onlay Preparation
- Extensive Caries: When a tooth has significant decay that cannot be effectively treated with a filling but does not require a full crown.
- Fractured Teeth: For teeth that have fractured cusps or significant structural loss.
- Strengthening: To reinforce a tooth that has been weakened by previous restorations or caries.
3. Onlay Preparation Procedure
A. Initial Assessment
- Clinical Examination: Assess the extent of caries or damage to determine if an onlay is appropriate.
- Radiographic Evaluation: Use X-rays to evaluate the tooth structure and surrounding tissues.
B. Tooth Preparation
-
Burs Used:
- Commonly used burs include No. 169 L for initial cavity preparation and No. 271 for refining the preparation.
-
Cavity Preparation:
- Occlusal Entry: The initial occlusal entry should be approximately 1.5 mm deep.
- Divergence of Walls: All cavity walls should
diverge occlusally by 2-5 degrees:
- 2 degrees: For short vertical walls.
- 5 degrees: For long vertical walls.
-
Proximal Box Preparation:
- The proximal box margins should clear adjacent teeth by 0.2-0.5 mm, with 0.5 ± 0.2 mm being ideal.
C. Bevels and Flares
-
Facial and Lingual Flares:
- Primary and secondary flares should be created on the facial and lingual proximal walls to form the walls in two planes.
- The secondary flare widens the proximal box, allowing for better access and cleaning.
-
Gingival Bevels:
- Should be 0.5-1 mm wide and blend with the secondary flare, resulting in a marginal metal angle of 30 degrees.
-
Occlusal Bevels:
- Present on the cavosurface margins of the cavity on the occlusal surface, approximately 1/4th the depth of the respective wall, resulting in a marginal metal angle of 40 degrees.
4. Dimensions for Onlay Preparation
A. Depth of Preparation
- Occlusal Depth: Approximately 1.5 mm to ensure adequate thickness of the restorative material.
- Proximal Box Depth: Should be sufficient to accommodate the onlay while maintaining the integrity of the tooth structure.
B. Marginal Angles
- Facial and Lingual Margins: Should be prepared with a 30-degree angle for burnishability and strength.
- Enamel Margins: Ideally, the enamel margins should be blunted to a 140-degree angle to enhance strength.
C. Cusp Reduction
- Cusp Coverage: Cusp reduction is indicated when more than 1/2 of a cusp is involved, and mandatory when 2/3 or more is involved.
- Uniform Metal Thickness: The reduction must provide for a uniform metal thickness of approximately 1.5 mm over the reduced cusps.
- Facial Cusp Reduction: For maxillary premolars and first molars, the reduction of the facial cusp should be 0.75-1 mm for esthetic reasons.
D. Reverse Bevel
- Definition: A bevel on the margins of the reduced cusp, extending beyond any occlusal contact with opposing teeth, resulting in a marginal metal angle of 30 degrees.
5. Considerations for Onlay Preparation
- Retention and Resistance: The preparation should be designed to maximize retention and resistance form, which may include the use of proximal retentive grooves and collar features.
- Aesthetic Considerations: The preparation should account for the esthetic requirements, especially in anterior teeth or visible areas.
- Material Selection: The choice of material (e.g., gold, porcelain, composite) will influence the preparation design and dimensions.
Caridex System
Caridex is a dental system designed for the treatment of root canals, utilizing the non-specific proteolytic effects of sodium hypochlorite (NaOCl) to aid in the cleaning and disinfection of the root canal system. Below is an overview of its components, mechanism of action, advantages, and drawbacks.
1. Components of Caridex
A. Caridex Solution I
- Composition:
- 0.1 M Butyric Acid
- 0.1 M Sodium Hypochlorite (NaOCl)
- 0.1 M Sodium Hydroxide (NaOH)
B. Caridex Solution II
- Composition:
- 1% Sodium Hypochlorite in a weak alkaline solution.
C. Delivery System
- Components:
- NaOCl Pump: Delivers the sodium hypochlorite solution.
- Heater: Maintains the temperature of the solution for optimal efficacy.
- Solution Reservoir: Holds the prepared solutions.
- Handpiece: Designed to hold the applicator tip for precise application.
2. Mechanism of Action
- Proteolytic Effect: The primary mechanism of action of Caridex is based on the non-specific proteolytic effect of sodium hypochlorite.
- Chlorination of Collagen: The N-monochloro-dl-2-aminobutyric acid (NMAB) component enhances the chlorination of degraded collagen in dentin.
- Conversion of Hydroxyproline: The hydroxyproline present in collagen is converted to pyrrole-2-carboxylic acid, which is part of the degradation process of dentin collagen.
3. pH and Application Time
- Resultant pH: The pH of the Caridex solution is approximately 12, which is alkaline and conducive to the disinfection process.
- Application Time: The recommended application time for Caridex is 20 minutes, allowing sufficient time for the solution to act on the root canal system.
4. Advantages
- Effective Disinfection: The use of sodium hypochlorite provides a strong antimicrobial effect, helping to eliminate bacteria and debris from the root canal.
- Collagen Degradation: The system's ability to degrade collagen can aid in the removal of organic material from the canal.
5. Drawbacks
- Low Efficiency: The overall effectiveness of the Caridex system may be limited compared to other modern endodontic cleaning solutions.
- Short Shelf Life: The components may have a limited shelf life, affecting their usability over time.
- Time and Volume: The system requires a significant volume of solution and a longer application time, which may not be practical in all clinical settings.