Talk to us?

Conservative Dentistry - NEETMDS- courses
NEET MDS Lessons
Conservative Dentistry

Dental Burs

Dental burs are essential tools used in restorative dentistry for cutting, shaping, and finishing tooth structure. The design and characteristics of burs significantly influence their cutting efficiency, vibration, and overall performance. Below is a detailed overview of the key features and considerations related to dental burs.

1. Structure of Burs

A. Blades and Flutes

  • Blades: The cutting edges on a bur are uniformly spaced, and the number of blades is always even.
  • Flutes: The spaces between the blades are referred to as flutes. These flutes help in the removal of debris during cutting.

B. Cutting Action

  • Number of Blades:
    • Excavating Burs: Typically have 6-10 blades. These burs are designed for efficient removal of tooth structure.
    • Finishing Burs: Have 12-40 blades, providing a smoother finish to the tooth surface.
  • Cutting Efficiency:
    • A greater number of blades results in a smoother cutting action at low speeds.
    • However, as the number of blades increases, the space between subsequent blades decreases, which can reduce the overall cutting efficiency.

2. Vibration and RPM

A. Vibration

  • Cycles per Second: Vibrations over 1,300 cycles/second are generally imperceptible to patients.
  • Effect of Blade Number: Fewer blades on a bur tend to produce greater vibrations during use.
  • RPM Impact: Higher RPM (revolutions per minute) results in less amplitude and greater frequency of vibration, contributing to a smoother cutting experience.

3. Rake Angle

A. Definition

  • Rake Angle: The angle that the face of the blade makes with a radial line drawn from the center of the bur to the blade.

B. Cutting Efficiency

  • Positive Rake Angle: Generally preferred for cutting efficiency.
  • Radial Rake Angle: Intermediate efficiency.
  • Negative Rake Angle: Less efficient for cutting.
  • Clogging: Burs with a positive rake angle may experience clogging due to debris accumulation.

4. Clearance Angle

A. Definition

  • Clearance Angle: This angle provides necessary clearance between the working edge and the cutting edge of the bur, allowing for effective cutting without binding.

5. Run-Out

A. Definition

  • Run-Out: Refers to the eccentricity or maximum displacement of the bur head from its axis of rotation.
  • Acceptable Value: The average clinically acceptable run-out is about 0.023 mm. Excessive run-out can lead to uneven cutting and discomfort for the patient.

6. Load Applied by Dentist

A. Load Ranges

  • Low Speed: The load applied by the dentist typically ranges from 100 to 1500 grams.
  • High Speed: The load is generally lower, ranging from 60 to 120 grams.

7. Diamond Stones

A. Characteristics

  • Hardness: Diamond stones are the hardest and most efficient abrasive tools available for removing tooth enamel.
  • Application: They are commonly used for cutting and finishing procedures due to their superior cutting ability and durability.

Refractory materials are essential in the field of dentistry, particularly in the branch of conservative dentistry and prosthodontics, for the fabrication of various restorations and appliances. These materials are characterized by their ability to withstand high temperatures without undergoing significant deformation or chemical change. This is crucial for the longevity and stability of the dental work. The primary function of refractory materials is to provide a precise and durable mold or pattern for the casting of metal restorations, such as crowns, bridges, and inlays/onlays.

Refractory materials include:

- Plaster of Paris: The most commonly used refractory material in dentistry, plaster is composed of calcium sulfate hemihydrate. It is mixed with water to form a paste that is used to make study models and casts. It has a relatively low expansion coefficient and is easy to manipulate, making it suitable for various applications.


- Dental stone: A more precise alternative to plaster, dental stone is a type of gypsum product that offers higher strength and less dimensional change. It is commonly used for master models and die fabrication due to its excellent surface detail reproduction.


- Investment materials: Used in the casting process of fabricating indirect restorations, investment materials are refractory and encapsulate the wax pattern to create a mold. They can withstand the high temperatures required for metal casting without distortion.


- Zirconia: A newer refractory material gaining popularity, zirconia is a ceramic that is used for the fabrication of all-ceramic crowns and bridges. It is extremely durable and has a high resistance to wear and fracture.


- Refractory die materials: These are used in the production of metal-ceramic restorations. They are capable of withstanding the high temperatures involved in the ceramic firing process and provide a reliable foundation for the ceramic layers.

The selection of a refractory material is based on factors such as the intended use, the required accuracy, and the specific properties needed for the final restoration. The material must have a low thermal expansion coefficient to minimize the thermal stress during the casting process and maintain the integrity of the final product. Additionally, the material should be able to reproduce the fine details of the oral anatomy and have good physical and mechanical properties to ensure stability and longevity.

Refractory materials are typically used in the following procedures:

- Impression taking: Refractory materials are used to make models from the patient's impressions.
- Casting of metal restorations: A refractory mold is created from the model to cast the metal framework.
- Ceramic firing: Refractory die materials hold the ceramic in place while it is fired at high temperatures.
- Temporary restorations: Some refractory materials can be used to produce temporary restorations that are highly accurate and durable.

Refractory materials are critical for achieving the correct fit and function of dental restorations, as well as ensuring patient satisfaction with the aesthetics and comfort of the final product.

Capacity of Motion of the Mandible

The capacity of motion of the mandible is a crucial aspect of dental and orthodontic practice, as it influences occlusion, function, and treatment planning. In 1952, Dr. Harold Posselt developed a systematic approach to recording and analyzing mandibular movements, resulting in what is now known as Posselt's diagram. This guide will provide an overview of Posselt's work, the significance of mandibular motion, and the key points of reference used in clinical practice.

1. Posselt's Diagram

A. Historical Context

  • Development: In 1952, Dr. Harold Posselt utilized a system of clutches and flags to record the motion of the mandible. His work laid the foundation for understanding mandibular dynamics and occlusion.
  • Recording Method: The original recordings were conducted outside of the mouth, which magnified the vertical dimension of movement but did not accurately represent the horizontal dimension.

B. Modern Techniques

  • Digital Recording: Advances in technology have allowed for the use of digital computer techniques to record mandibular motion in real-time. This enables accurate measurement of movements in both vertical and horizontal dimensions.
  • Reconstruction of Motion: Modern systems can compute and visualize mandibular motion at multiple points simultaneously, providing valuable insights for clinical applications.

2. Key Points of Reference

Three significant points of reference are particularly important in the study of mandibular motion:

A. Incisor Point

  • Location: The incisor point is located on the midline of the mandible at the junction of the facial surface of the mandibular central incisors and the incisal edge.
  • Clinical Significance: This point is crucial for assessing anterior guidance and incisal function during mandibular movements.

B. Molar Point

  • Location: The molar point is defined as the tip of the mesiofacial cusp of the mandibular first molar on a specified side.
  • Clinical Significance: The molar point is important for evaluating occlusal relationships and the functional dynamics of the posterior teeth during movement.

C. Condyle Point

  • Location: The condyle point refers to the center of rotation of the mandibular condyle on the specified side.
  • Clinical Significance: Understanding the condyle point is essential for analyzing the temporomandibular joint (TMJ) function and the overall biomechanics of the mandible.

3. Clinical Implications

A. Occlusion and Function

  • Mandibular Motion: The capacity of motion of the mandible affects occlusal relationships, functional movements, and the overall health of the masticatory system.
  • Treatment Planning: Knowledge of mandibular motion is critical for orthodontic treatment, prosthodontics, and restorative dentistry, as it influences the design and placement of restorations and appliances.

B. Diagnosis and Assessment

  • Evaluation of Movement: Clinicians can use the principles established by Posselt to assess and diagnose issues related to mandibular function, such as limitations in movement or discrepancies in occlusion.

Proper Pin Placement in Amalgam Restorations

Principles of Pin Placement

  • Strength Maintenance: Proper pin placement does not reduce the strength of amalgam restorations. The goal is to maintain the strength of the restoration regardless of the clinical problem, tooth size, or available space for pins.
  • Single Unit Restoration: In modern amalgam preparations, it is essential to secure the restoration and the tooth as a single unit. This is particularly important when significant tooth structure has been lost.

Considerations for Cusp Replacement

  • Cusp Replacement: If the mesiofacial wall is replaced, the mesiofacial cusp must also be replaced to ensure proper occlusal function and distribution of forces.
  • Force Distribution: It is crucial to recognize that forces of occlusal loading must be distributed over a large area. If the distofacial cusp were replaced with a pin, there would be a tendency for the restoration to rotate around the mesial pins, potentially leading to displacement or failure of the restoration.

Dental mercury hygiene is crucial in minimizing occupational exposure to mercury vapor and amalgam particles during the placement, removal, and handling of dental amalgam. The following recommendations are based on the best practices and guidelines established by various dental and environmental health organizations:

- Use of amalgam separators: Dental offices should install and maintain amalgam separators to capture at least 95% of amalgam particles before they enter the wastewater system. This reduces the release of mercury into the environment.
- Vacuum line maintenance: Regularly replace the vacuum line trap to avoid mercury accumulation and ensure efficient evacuation of mercury vapor during amalgam removal.
- Adequate ventilation: Maintain proper air exchange in the operatory and use a high-volume evacuation (HVE) system to reduce mercury vapor levels during amalgam placement and removal.
- Personal protective equipment (PPE): Dentists, hygienists, and assistants should wear PPE, such as masks, gloves, and protective eyewear to minimize skin and respiratory exposure to mercury vapor and particles.
- Mercury spill management: Have a written spill protocol and necessary clean-up materials readily available. Use a HEPA vacuum to clean up spills and dispose of contaminated materials properly.
- Safe storage: Store elemental mercury in tightly sealed, non-breakable containers in a dedicated area with controlled access.
- Proper disposal: Follow local, state, and federal regulations for the disposal of dental amalgam waste, including used capsules, amalgam separators, and chairside traps.
- Continuous monitoring: Implement regular monitoring of mercury vapor levels in the operatory and staff exposure levels to ensure compliance with occupational safety guidelines.
- Staff training: Provide regular training on the handling of dental amalgam and mercury hygiene to all dental personnel.
- Patient communication: Inform patients about the use of dental amalgam and the safety measures in place to minimize their exposure to mercury.
- Alternative restorative materials: Consider using alternative restorative materials, such as composite resins or glass ionomers, where appropriate.

Ariston pHc Alkaline Glass Restorative

Ariston pHc is a notable dental restorative material developed by Ivoclar Vivadent in 1990. This innovative material is designed to provide both restorative and preventive benefits, particularly in the management of dental caries.

1. Introduction

  • Manufacturer: Ivoclar Vivadent (Liechtenstein)
  • Year of Introduction: 1990

2. Key Features

A. Ion Release Mechanism

  • Fluoride, Hydroxide, and Calcium Ions: Ariston pHc releases fluoride, hydroxide, and calcium ions when the pH within the restoration falls to critical levels. This release occurs in response to acidic conditions that can lead to enamel and dentin demineralization.

B. Acid Neutralization

  • Counteracting Decalcification: The ions released by Ariston pHc help neutralize acids in the oral environment, effectively counteracting the decalcification of both enamel and dentin. This property is particularly beneficial in preventing further carious activity around the restoration.

3. Material Characteristics

A. Light-Activated

  • Curing Method: Ariston pHc is a light-activated material, allowing for controlled curing and setting. This feature enhances the ease of use and application in clinical settings.

B. Bulk Thickness

  • Curing Depth: The material can be cured in bulk thicknesses of up to 4 mm, making it suitable for various cavity preparations, including larger restorations.

4. Indications for Use

A. Recommended Applications

  • Class I and II Lesions: Ariston pHc is recommended for use in Class I and II lesions in both deciduous (primary) and permanent teeth. Its properties make it particularly effective in managing carious lesions in children and adults.

5. Clinical Benefits

A. Preventive Properties

  • Remineralization Support: The release of fluoride and calcium ions not only helps in neutralizing acids but also supports the remineralization of adjacent tooth structures, enhancing the overall health of the tooth.

B. Versatility

  • Application in Various Situations: The ability to cure in bulk and its compatibility with different cavity classes make Ariston pHc a versatile choice for dental practitioners.

Electrochemical Corrosion

Electrochemical corrosion is a significant phenomenon that can affect the longevity and integrity of dental materials, particularly in amalgam restorations. Understanding the mechanisms of corrosion, including the role of electromotive force (EMF) and the specific reactions that occur at the margins of restorations, is essential for dental clinics

1. Electrochemical Corrosion and Creep

A. Definition

  • Electrochemical Corrosion: This type of corrosion occurs when metals undergo oxidation and reduction reactions in the presence of an electrolyte, leading to the deterioration of the material.

B. Creep at Margins

  • Creep: In the context of dental amalgams, creep refers to the slow, permanent deformation of the material at the margins of the restoration. This can lead to the extrusion of material at the margins, compromising the seal and integrity of the restoration.

C. Mercuroscopic Expansion

  • Mercuroscopic Expansion: This phenomenon occurs when mercury from the amalgam (specifically from the Sn7-8 Hg phase) reacts with Ag3Sn particles. The reaction produces further expansion, which can exacerbate the issues related to creep and marginal integrity.

2. Electromotive Force (EMF) Series

A. Definition

  • Electromotive Force (EMF) Series: The EMF series is a classification of elements based on their tendency to dissolve in water. It ranks metals according to their standard electrode potentials, which indicate how easily they can be oxidized.

B. Importance in Corrosion

  • Dissolution Tendencies: The EMF series helps predict which metals are more likely to corrode when in contact with other metals or electrolytes. Metals higher in the series have a greater tendency to lose electrons and dissolve, making them more susceptible to corrosion.

C. Calculation of Potential Values

  • Standard Conditions: The potential values in the EMF series are calculated under standard conditions, specifically:
    • One Atomic Weight: Measured in grams.
    • 1000 mL of Water: The concentration of ions is considered in a liter of water.
    • Temperature: Typically at 25°C (298 K).

3. Implications for Dental Practice

A. Material Selection

  • Understanding the EMF series can guide dental professionals in selecting materials that are less prone to corrosion when used in combination with other metals, such as in restorations or prosthetics.

B. Prevention of Corrosion

  • Proper Handling: Careful handling and placement of amalgam restorations can minimize the risk of electrochemical corrosion.
  • Avoiding Dissimilar Metals: Reducing the use of dissimilar metals in close proximity can help prevent galvanic corrosion, which can occur when two different metals are in contact in the presence of an electrolyte.

C. Monitoring and Maintenance

  • Regular monitoring of restorations for signs of marginal breakdown or corrosion can help in early detection and intervention, preserving the integrity of dental work.

Explore by Exams