Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Conservative Dentistry

Various dyes have been tried to detect carious enamel, each having some Advantages and Disadvantages:

‘Procion’ dyes stain enamel lesions but the staining becomes irreversible because the dye reacts with nitrogen and hydroxyl groups of enamel and acts as a fixative.

‘Calcein’ dye makes a complex with calcium and remains bound to the lesion.

‘Fluorescent dye’ like Zyglo ZL-22 has been used in vitro which is not suitable in vivo. The dye is made visible by ultraviolet illumination.

‘Brilliant blue’ has also been used to enhance the diagnostic quality of fiberoptic transillumination.

Nursing Caries and Rampant Caries

Nursing caries and rampant caries are both forms of dental caries that can lead to significant oral health issues, particularly in children.

Nursing Caries

  • Nursing Caries: A specific form of rampant caries that primarily affects infants and toddlers, characterized by a distinct pattern of decay.

Age of Occurrence

  • Age Group: Typically seen in infants and toddlers, particularly those who are bottle-fed or breastfed on demand.

Dentition Involved

  • Affected Teeth: Primarily affects the primary dentition, especially the maxillary incisors and molars. Notably, the mandibular incisors are usually spared.

Characteristic Features

  • Decay Pattern:
    • Involves maxillary incisors first, followed by molars.
    • Mandibular incisors are not affected due to protective factors.
  • Rapid Lesion Development: New lesions appear quickly, indicating acute decay rather than chronic neglect.

Etiology

  • Feeding Practices:
    • Improper feeding practices are the primary cause, including:
      • Bottle feeding before sleep.
      • Pacifiers dipped in honey or other sweeteners.
      • Prolonged at-will breastfeeding.

Treatment

  • Early Detection: If detected early, nursing caries can be managed with:
    • Topical fluoride applications.
    • Education for parents on proper feeding and oral hygiene.
  • Maintenance: Focus on maintaining teeth until the transition to permanent dentition occurs.

Prevention

  • Education: Emphasis on educating prospective and new mothers about proper feeding practices and oral hygiene to prevent nursing caries.

Rampant Caries

  • Rampant Caries: A more generalized and acute form of caries that can occur at any age, characterized by widespread decay and early pulpal involvement.

Age of Occurrence

  • Age Group: Can be seen at all ages, including adolescence and adulthood.

Dentition Involved

  • Affected Teeth: Affects both primary and permanent dentition, including teeth that are typically resistant to decay.

Characteristic Features

  • Decay Pattern:
    • Involves surfaces that are usually immune to decay, including mandibular incisors.
    • Rapid appearance of new lesions, indicating a more aggressive form of caries.

Etiology

  • Multifactorial Causes: Rampant caries is influenced by a combination of factors, including:
    • Frequent snacking and excessive intake of sticky refined carbohydrates.
    • Decreased salivary flow.
    • Genetic predisposition.

Treatment

  • Pulp Therapy:
    • Often requires more extensive treatment, including pulp therapy for teeth with multiple pulp exposures.
    • Long-term treatment may be necessary, especially when permanent dentition is involved.

Prevention

  • Mass Education: Dental health education should be provided at a community level, targeting individuals of all ages to promote good oral hygiene and dietary practices.

Key Differences

Mandibular Anterior Teeth

  • Nursing Caries: Mandibular incisors are spared due to:
    1. Protection from the tongue.
    2. Cleaning action of saliva, aided by the proximity of the sublingual gland ducts.
  • Rampant Caries: Mandibular incisors can be affected, as this condition does not spare teeth that are typically resistant to decay.

Pouring the Final Impression

Technique

  • Mixing Die Stone: A high-strength die stone is mixed using a vacuum mechanical mixer to ensure a homogenous mixture without air bubbles.
  • Pouring Process:
    • The die stone is poured into the impression using a vibrator and a No. 7 spatula.
    • The first increments should be applied in small amounts, allowing the material to flow into the remote corners and angles of the preparation without trapping air.
  • Surface Tension-Reducing Agents: These agents can be added to the die stone to enhance its flow properties, allowing it to penetrate deep into the internal corners of the impression.

Final Dimensions

  • The impression should be filled sufficiently so that the dies will be approximately 15 to 20 mm tall occluso-gingivally after trimming. This height is important for the stability and accuracy of the final restoration.

Composite Cavity Preparation

Composite cavity preparations are designed to optimize the placement and retention of composite resin materials in restorative dentistry. There are three basic designs for composite cavity preparations: Conventional, Beveled Conventional, and Modified. Each design has specific characteristics and indications based on the clinical situation.

1. Conventional Preparation Design

A. Characteristics

  • Design: Similar to cavity preparations for amalgam restorations.
  • Shape: Box-like cavity with slight occlusal convergence, flat floors, and undercuts in dentin.
  • Cavosurface Angle: Near 90° (butt joint), which provides a strong interface for the restoration.

B. Indications

  • Moderate to Large Class I and Class II Restorations: Suitable for larger cavities where significant tooth structure is missing.
  • Replacement of Existing Amalgam: When an existing amalgam restoration needs to be replaced, a conventional preparation is often indicated.
  • Class II Cavities Extending onto the Root: In cases where the cavity extends onto the root, a conventional design is preferred to ensure adequate retention and support.

2. Beveled Conventional Preparation

A. Characteristics

  • Enamel Cavosurface Bevel: Incorporation of a bevel at the enamel margin to increase surface area for bonding.
  • End-on-Etching: The bevel allows for more effective etching of the enamel rods, enhancing adhesion.
  • Benefits:
    • Improves retention of the composite material.
    • Reduces microleakage at the restoration interface.
    • Strengthens the remaining tooth structure.

B. Preparation Technique

  • Bevel Preparation: The bevel is created using a flame-shaped diamond instrument, approximately 0.5 mm wide and angled at 45° to the external enamel surface.

C. Indications

  • Large Area Restorations: Ideal for restoring larger areas of tooth structure.
  • Replacing Existing Restorations: Suitable for class III, IV, and VI cavities where composite is used to replace older restorations.
  • Rarely Used for Posterior Restorations: While effective, this design is less commonly used for posterior teeth due to aesthetic considerations.

3. Modified Preparation

A. Characteristics

  • Depth of Preparation: Does not routinely extend into dentin; the depth is determined by the extent of the carious lesion.
  • Wall Configuration: No specified wall configuration, allowing for flexibility in design.
  • Conservation of Tooth Structure: Aims to conserve as much tooth structure as possible while obtaining retention through micro-mechanical means (acid etching).
  • Appearance: Often has a scooped-out appearance, reflecting its conservative nature.

B. Indications

  • Small Cavitated Carious Lesions: Best suited for small carious lesions that are surrounded by enamel.
  • Correcting Enamel Defects: Effective for addressing minor enamel defects without extensive preparation.

C. Modified Preparation Designs

  • Class III (A and B): For anterior teeth, focusing on small defects or carious lesions.
  • Class IV (C and D): For anterior teeth with larger defects, ensuring minimal loss of healthy tooth structure.

Supporting Cusps in Dental Occlusion

Supporting cusps, also known as stamp cusps, centric holding cusps, or holding cusps, play a crucial role in dental occlusion and function. They are essential for effective chewing and maintaining the vertical dimension of the face. This guide will outline the characteristics, functions, and clinical significance of supporting cusps.

Supporting Cusps: These are the cusps of the maxillary and mandibular teeth that make contact during maximum intercuspation (MI) and are primarily responsible for supporting the vertical dimension of the face and facilitating effective chewing.

Location

  • Maxillary Supporting Cusps: Located on the lingual occlusal line of the maxillary teeth.
  • Mandibular Supporting Cusps: Located on the facial occlusal line of the mandibular teeth.

Functions of Supporting Cusps

A. Chewing Efficiency

  • Mortar and Pestle Action: Supporting cusps contact the opposing teeth in their corresponding faciolingual center on a marginal ridge or a fossa, allowing them to cut, crush, and grind fibrous food effectively.
  • Food Reduction: The natural tooth form, with its multiple ridges and grooves, aids in the reduction of the food bolus during chewing.

B. Stability and Alignment

  • Preventing Drifting: Supporting cusps help prevent the drifting and passive eruption of teeth, maintaining proper occlusal relationships.

Characteristics of Supporting Cusps

Supporting cusps can be identified by the following five characteristic features:

  1. Contact in Maximum Intercuspation (MI): They make contact with the opposing tooth during MI, providing stability in occlusion.

  2. Support for Vertical Dimension: They contribute to maintaining the vertical dimension of the face, which is essential for proper facial aesthetics and function.

  3. Proximity to Faciolingual Center: Supporting cusps are located nearer to the faciolingual center of the tooth compared to nonsupporting cusps, enhancing their functional role.

  4. Potential for Contact on Outer Incline: The outer incline of supporting cusps has the potential for contact with opposing teeth, facilitating effective occlusion.

  5. Broader, Rounded Cusp Ridges: Supporting cusps have broader and more rounded cusp ridges than nonsupporting cusps, making them better suited for crushing food.

Clinical Significance

A. Occlusal Relationships

  • Maxillary vs. Mandibular Arch: The maxillary arch is larger than the mandibular arch, resulting in the supporting cusps of the maxilla being more robust and better suited for crushing food than those of the mandible.

B. Lingual Tilt of Posterior Teeth

  • Height of Supporting Cusps: The lingual tilt of the posterior teeth increases the relative height of the supporting cusps compared to nonsupporting cusps, which can obscure central fossa contacts.

C. Restoration Considerations

  • Restoration Fabrication: During the fabrication of restorations, it is crucial to ensure that supporting cusps do not contact opposing teeth in a manner that results in lateral deflection. Instead, restorations should provide contacts on plateaus or smoothly concave fossae to direct masticatory forces parallel to the long axes of the teeth.

Biologic Width and Drilling Speeds

In restorative dentistry, understanding the concepts of biologic width and the appropriate drilling speeds is essential for ensuring successful outcomes and maintaining periodontal health.

1. Biologic Width

Definition

  • Biologic Width: The biologic width is the area of soft tissue that exists between the crest of the alveolar bone and the gingival margin. It is crucial for maintaining periodontal health and stability.
  • Dimensions: The biologic width is ideally approximately 3 mm wide and consists of:
    • 1 mm of Connective Tissue: This layer provides structural support and attachment to the tooth.
    • 1 mm of Epithelial Attachment: This layer forms a seal around the tooth, preventing the ingress of bacteria and other irritants.
    • 1 mm of Gingival Sulcus: This is the space between the tooth and the gingiva, which is typically filled with gingival crevicular fluid.

Importance

  • Periodontal Health: The integrity of the biologic width is essential for the health of the periodontal attachment apparatus. If this zone is compromised, it can lead to periodontal inflammation and other complications.

Consequences of Violation

  • Increased Risk of Inflammation: If a restorative procedure violates the biologic width (e.g., by placing a restoration too close to the bone), there is a higher likelihood of periodontal inflammation.
  • Apical Migration of Attachment: Violation of the biologic width can cause the attachment apparatus to move apically, leading to loss of attachment and potential periodontal disease.

2. Recommended Drilling Speeds

Drilling Speeds

  • Ultra Low Speed: The recommended speed for drilling channels is between 300-500 rpm.
  • Low Speed: A speed of 1000 rpm is also considered low speed for certain procedures.

Heat Generation

  • Minimal Heat Production: At these low speeds, very little heat is generated during the drilling process. This is crucial for:
    • Preventing Thermal Damage: Low heat generation reduces the risk of thermal damage to the tooth structure and surrounding tissues.
    • Avoiding Pulpal Irritation: Excessive heat can lead to pulpal irritation or necrosis, which can compromise the health of the tooth.

Cooling Requirements

  • No Cooling Required: Because of the minimal heat generated at these speeds, additional cooling with water or air is typically not required. This simplifies the procedure and reduces the complexity of the setup.

Refractory materials are essential in the field of dentistry, particularly in the branch of conservative dentistry and prosthodontics, for the fabrication of various restorations and appliances. These materials are characterized by their ability to withstand high temperatures without undergoing significant deformation or chemical change. This is crucial for the longevity and stability of the dental work. The primary function of refractory materials is to provide a precise and durable mold or pattern for the casting of metal restorations, such as crowns, bridges, and inlays/onlays.

Refractory materials include:

- Plaster of Paris: The most commonly used refractory material in dentistry, plaster is composed of calcium sulfate hemihydrate. It is mixed with water to form a paste that is used to make study models and casts. It has a relatively low expansion coefficient and is easy to manipulate, making it suitable for various applications.


- Dental stone: A more precise alternative to plaster, dental stone is a type of gypsum product that offers higher strength and less dimensional change. It is commonly used for master models and die fabrication due to its excellent surface detail reproduction.


- Investment materials: Used in the casting process of fabricating indirect restorations, investment materials are refractory and encapsulate the wax pattern to create a mold. They can withstand the high temperatures required for metal casting without distortion.


- Zirconia: A newer refractory material gaining popularity, zirconia is a ceramic that is used for the fabrication of all-ceramic crowns and bridges. It is extremely durable and has a high resistance to wear and fracture.


- Refractory die materials: These are used in the production of metal-ceramic restorations. They are capable of withstanding the high temperatures involved in the ceramic firing process and provide a reliable foundation for the ceramic layers.

The selection of a refractory material is based on factors such as the intended use, the required accuracy, and the specific properties needed for the final restoration. The material must have a low thermal expansion coefficient to minimize the thermal stress during the casting process and maintain the integrity of the final product. Additionally, the material should be able to reproduce the fine details of the oral anatomy and have good physical and mechanical properties to ensure stability and longevity.

Refractory materials are typically used in the following procedures:

- Impression taking: Refractory materials are used to make models from the patient's impressions.
- Casting of metal restorations: A refractory mold is created from the model to cast the metal framework.
- Ceramic firing: Refractory die materials hold the ceramic in place while it is fired at high temperatures.
- Temporary restorations: Some refractory materials can be used to produce temporary restorations that are highly accurate and durable.

Refractory materials are critical for achieving the correct fit and function of dental restorations, as well as ensuring patient satisfaction with the aesthetics and comfort of the final product.

Explore by Exams