NEET MDS Lessons
Conservative Dentistry
Dental Burs
Dental burs are essential tools used in restorative dentistry for cutting, shaping, and finishing tooth structure. The design and characteristics of burs significantly influence their cutting efficiency, vibration, and overall performance. Below is a detailed overview of the key features and considerations related to dental burs.
1. Structure of Burs
A. Blades and Flutes
- Blades: The cutting edges on a bur are uniformly spaced, and the number of blades is always even.
- Flutes: The spaces between the blades are referred to as flutes. These flutes help in the removal of debris during cutting.
B. Cutting Action
- Number of Blades:
- Excavating Burs: Typically have 6-10 blades. These burs are designed for efficient removal of tooth structure.
- Finishing Burs: Have 12-40 blades, providing a smoother finish to the tooth surface.
- Cutting Efficiency:
- A greater number of blades results in a smoother cutting action at low speeds.
- However, as the number of blades increases, the space between subsequent blades decreases, which can reduce the overall cutting efficiency.
2. Vibration and RPM
A. Vibration
- Cycles per Second: Vibrations over 1,300 cycles/second are generally imperceptible to patients.
- Effect of Blade Number: Fewer blades on a bur tend to produce greater vibrations during use.
- RPM Impact: Higher RPM (revolutions per minute) results in less amplitude and greater frequency of vibration, contributing to a smoother cutting experience.
3. Rake Angle
A. Definition
- Rake Angle: The angle that the face of the blade makes with a radial line drawn from the center of the bur to the blade.
B. Cutting Efficiency
- Positive Rake Angle: Generally preferred for cutting efficiency.
- Radial Rake Angle: Intermediate efficiency.
- Negative Rake Angle: Less efficient for cutting.
- Clogging: Burs with a positive rake angle may experience clogging due to debris accumulation.
4. Clearance Angle
A. Definition
- Clearance Angle: This angle provides necessary clearance between the working edge and the cutting edge of the bur, allowing for effective cutting without binding.
5. Run-Out
A. Definition
- Run-Out: Refers to the eccentricity or maximum displacement of the bur head from its axis of rotation.
- Acceptable Value: The average clinically acceptable run-out is about 0.023 mm. Excessive run-out can lead to uneven cutting and discomfort for the patient.
6. Load Applied by Dentist
A. Load Ranges
- Low Speed: The load applied by the dentist typically ranges from 100 to 1500 grams.
- High Speed: The load is generally lower, ranging from 60 to 120 grams.
7. Diamond Stones
A. Characteristics
- Hardness: Diamond stones are the hardest and most efficient abrasive tools available for removing tooth enamel.
- Application: They are commonly used for cutting and finishing procedures due to their superior cutting ability and durability.
Pin size
In general, increase in diameter of pin offers more retention but large
sized pins can result in more stresses in dentin. Pins are available in four
color coded sizes:
|
Name |
Pin diameter |
Color code |
|
·
Minuta |
0.38 mm |
Pink |
|
·
Minikin |
0.48mm |
Red |
|
·
Minim |
0.61 mm |
Silver |
|
·
Regular |
0.78 mm |
Gold
|
Selection of pin size depends upon the following factors:
·
Amount of dentin present
·
Amount of retention required
For most posterior restorations, Minikin size of pins is used because
they provide maximum retention without causing crazing in dentin.
A. Retention vs. Stress
- Retention: Generally, an increase in the diameter of the pin offers more retention for the restoration.
- Stress: However, larger pins can result in increased stresses in the dentin, which may lead to complications such as crazing or cracking of the tooth structure.
2. Factors Influencing Pin Size Selection
The selection of pin size depends on several factors:
A. Amount of Dentin Present
- Assessment: The amount of remaining dentin is a critical factor in determining the appropriate pin size. More dentin allows for the use of larger pins, while less dentin may necessitate smaller pins to avoid excessive stress.
B. Amount of Retention Required
- Retention Needs: The specific retention requirements of the restoration will also influence pin size selection. In cases where maximum retention is needed, larger pins may be considered, provided that sufficient dentin is available to accommodate them without causing damage.
3. Recommended Pin Size for Posterior Restorations
For most posterior restorations, the Minikin size pin (0.48 mm, color-coded red) is commonly used. This size provides a balance between adequate retention and minimizing the risk of causing crazing in the dentin.
Instrument formula
First number : It indicates width of blade (or of primary cutting edge) in 1/10 th of a millimeter (i.e. no. 10 means 1 mm blade width).
Second number :
1) It indicates primary cutting edge angle.
2) It is measured form a line parallel to the long axis of the instrument handle in clockwise centigrade. Expressed as per cent of 360° (e.g. 85 means 85% of 360 = 306°).
3)The instrument is positioned so that this number always exceeds 50. If the edge is locally perpendicular to the blade, then this number is normally omitted resulting in a three number code.
Third number : It indicates blade length in millimeter.
Fourth number :
1)Indicates blade angle relative to long axis of handle in clockwise centigrade.
2) The instrument is positioned so that this number. is always 50 or less. It becomes third number in a three number code when
2nd number is omitted.
Dental Burs: Design, Function, and Performance
Dental burs are essential tools in operative dentistry, used for cutting, shaping, and finishing tooth structure and restorative materials. This guide will cover the key features of dental burs, including blade design, rake angle, clearance angle, run-out, and performance characteristics.
1. Blade Design and Flutes
A. Blade Configuration
- Blades and Flutes: Blades on a bur are uniformly spaced, with depressed areas between them known as flutes. The design of the blades and flutes affects the cutting efficiency and smoothness of the bur's action.
- Number of Blades:
- The number of blades on a bur is always even.
- Excavating Burs: Typically have 6-10 blades, designed for efficient material removal.
- Finishing Burs: Have 12-40 blades, providing a smoother finish.
B. Cutting Efficiency
- Smoother Cutting Action: A greater number of blades results in a smoother cutting action at low speeds.
- Reduced Efficiency: As the number of blades increases, the space between subsequent blades decreases, leading to less surface area being cut and reduced efficiency.
2. Vibration Characteristics
A. Vibration and Patient Comfort
- Vibration Frequency: Vibrations over 1,300 cycles per second are generally imperceptible to patients.
- Effect of Blade Number: Fewer blades on a bur tend to produce greater vibrations, which can affect patient comfort.
- RPM and Vibration: Higher RPMs produce less amplitude and greater frequency of vibration, contributing to a smoother experience for the patient.
3. Rake Angle
A. Definition
- Rake Angle: The angle that the face of the blade makes with a radial line from the center of the bur to the blade.
B. Cutting Efficiency
- Positive Rake Angle: Burs with a positive rake angle are generally desired for cutting efficiency.
- Rake Angle Hierarchy: The cutting efficiency is ranked
as follows:
- Positive rake > Radial rake > Negative rake
- Clogging: Burs with a positive rake angle may experience clogging due to debris accumulation.
4. Clearance Angle
A. Definition
- Clearance Angle: This angle provides clearance between the working edge and the cutting edge of the bur, allowing for effective cutting without binding.
5. Run-Out
A. Definition
- Run-Out: Refers to the eccentricity or maximum displacement of the bur head from its axis of rotation.
- Acceptable Value: The average value of clinically acceptable run-out is about 0.023 mm. Excessive run-out can lead to uneven cutting and discomfort for the patient.
6. Load Characteristics
A. Load Applied by Dentist
- Low Speed: The minimum and maximum load applied through the bur is typically between 100 – 1500 grams.
- High Speed: For high-speed burs, the load is generally between 60 – 120 grams.
7. Diamond Stones
A. Abrasive Efficiency
- Diamond Stones: These are the hardest and most efficient abrasive stones available for removing tooth enamel. They are particularly effective for cutting and finishing hard dental materials.
Spray Particles in the Dental Operatory
1. Aerosols
Aerosols are composed of invisible particles that range in size from approximately 5 micrometers (µm) to 50 micrometers (µm).
Characteristics
- Suspension: Aerosols can remain suspended in the air for extended periods, often for hours, depending on environmental conditions.
- Transmission of Infection: Because aerosols can carry infectious agents, they pose a risk for the transmission of respiratory infections, including those caused by bacteria and viruses.
Clinical Implications
- Infection Control: Dental professionals must implement appropriate infection control measures, such as the use of personal protective equipment (PPE) and effective ventilation systems, to minimize exposure to aerosols.
2. Mists
Mists are visible droplets that are larger than aerosols, typically estimated to
be around 50 micrometers (µm) in diameter.
Characteristics
- Visibility: Mists can be seen in a beam of light, making them distinguishable from aerosols.
- Settling Time: Heavy mists tend to settle gradually from the air within 5 to 15 minutes after being generated.
Clinical Implications
- Infection Risk: Mists produced by patients with respiratory infections, such as tuberculosis, can transmit pathogens. Dental personnel should be cautious and use appropriate protective measures when treating patients with known respiratory conditions.
3. Spatter
Spatter consists of larger particles, generally greater than 50 micrometers
(µm), and includes visible splashes.
Characteristics
- Trajectory: Spatter has a distinct trajectory and typically falls within 3 feet of the patient’s mouth.
- Potential for Coating: Spatter can coat the face and outer garments of dental personnel, increasing the risk of exposure to infectious agents.
Clinical Implications
- Infection Pathways: Spatter or splashing onto mucosal surfaces is considered a potential route of infection for dental personnel, particularly concerning blood-borne pathogens.
- Protective Measures: The use of face shields, masks, and protective clothing is essential to minimize the risk of exposure to spatter during dental procedures.
4. Droplets
Droplets are larger than aerosols and mists, typically ranging from 5 to 100
micrometers in diameter. They are formed during procedures that involve the use
of water or saliva, such as ultrasonic scaling or high-speed handpieces.
Characteristics
- Size and Behavior: Droplets can be visible and may settle quickly due to their larger size. They can travel short distances but are less likely to remain suspended in the air compared to aerosols.
- Transmission of Pathogens: Droplets can carry pathogens, particularly during procedures that generate saliva or blood.
Clinical Implications
- Infection Control: Droplets can pose a risk for respiratory infections, especially in procedures involving patients with known infections. Proper PPE, including masks and face shields, is essential to minimize exposure.
5. Dust Particles
Dust particles are tiny solid particles that can be generated from various sources, including the wear of dental materials, the use of rotary instruments, and the handling of dental products.
Characteristics
- Size: Dust particles can vary in size but are generally smaller than 10 micrometers in diameter.
- Sources: They can originate from dental materials, such as composite resins, ceramics, and metals, as well as from the environment.
Clinical Implications
- Respiratory Risks: Inhalation of dust particles can pose respiratory risks to dental personnel. Effective ventilation and the use of masks can help reduce exposure.
- Allergic Reactions: Some individuals may have allergic reactions to specific dust particles, particularly those derived from dental materials.
6. Bioaerosols
Bioaerosols are airborne particles that contain living organisms or biological materials, including bacteria, viruses, fungi, and allergens.
Characteristics
- Composition: Bioaerosols can include a mixture of aerosols, droplets, and dust particles that carry viable microorganisms.
- Sources: They can be generated during dental procedures, particularly those that involve the manipulation of saliva, blood, or infected tissues.
Clinical Implications
- Infection Control: Bioaerosols pose a significant risk for the transmission of infectious diseases. Implementing strict infection control protocols, including the use of high-efficiency particulate air (HEPA) filters and proper PPE, is crucial.
- Monitoring Air Quality: Regular monitoring of air quality in the dental operatory can help assess the presence of bioaerosols and inform infection control practices.
7. Particulate Matter (PM)
Particulate matter (PM) refers to a mixture of solid particles and liquid droplets suspended in the air. In the dental context, it can include a variety of particles generated during procedures.
Characteristics
- Size Categories: PM is often categorized by size, including PM10 (particles with a diameter of 10 micrometers or less) and PM2.5 (particles with a diameter of 2.5 micrometers or less).
- Sources: In a dental setting, PM can originate from dental materials, equipment wear, and environmental sources.
Clinical Implications
- Health Risks: Exposure to particulate matter can have adverse health effects, particularly for individuals with respiratory conditions. Proper ventilation and air filtration systems can help mitigate these risks.
- Regulatory Standards: Dental practices may need to adhere to local regulations regarding air quality and particulate matter levels.
Indirect Porcelain Veneers: Etched Feldspathic Veneers
Indirect porcelain veneers, particularly etched porcelain veneers, are a popular choice in cosmetic dentistry for enhancing the aesthetics of teeth. This lecture will focus on the characteristics, bonding mechanisms, and clinical considerations associated with etched feldspathic veneers.
- Indirect Porcelain Veneers: These are thin shells of porcelain that are custom-made in a dental laboratory and then bonded to the facial surface of the teeth. They are used to improve the appearance of teeth that are discolored, misaligned, or have surface irregularities.
Types of Porcelain Veneers
- Feldspathic Porcelain: The most frequently used type of porcelain for veneers is feldspathic porcelain. This material is known for its excellent aesthetic properties, including translucency and color matching with natural teeth.
Hydrofluoric Acid Etching
- Etching with Hydrofluoric Acid: Feldspathic porcelain veneers are typically etched with hydrofluoric acid before bonding. This process creates a roughened surface on the porcelain, which enhances the bonding area.
- Surface Characteristics: The etching process increases the surface area and creates micro-retentive features that improve the mechanical interlocking between the porcelain and the resin bonding agent.
Resin-Bonding Mediums
- High Bond Strengths: The etched porcelain can achieve high bond strengths to the etched enamel through the use of resin-bonding agents. These agents are designed to penetrate the micro-retentive surface created by the etching process.
- Bonding Process:
- Surface Preparation: The porcelain surface is etched with hydrofluoric acid, followed by thorough rinsing and drying.
- Application of Bonding Agent: A resin bonding agent is applied to the etched porcelain surface. This agent may contain components that enhance adhesion to both the porcelain and the tooth structure.
- Curing: The bonding agent is cured, either chemically or with a light-curing process, to achieve a strong bond between the porcelain veneer and the tooth.
Importance of Enamel Etching
- Etched Enamel: The enamel surface of the tooth is also typically etched with phosphoric acid to enhance the bond between the resin and the tooth structure. This dual etching process (both porcelain and enamel) is crucial for achieving optimal bond strength.
Clinical Considerations
A. Indications for Use
- Aesthetic Enhancements: Indirect porcelain veneers are indicated for patients seeking aesthetic improvements, such as correcting discoloration, closing gaps, or altering the shape of teeth.
- Minimal Tooth Preparation: They require minimal tooth preparation compared to crowns, preserving more of the natural tooth structure.
B. Contraindications
- Severe Tooth Wear: Patients with significant tooth wear or structural damage may require alternative restorative options.
- Bruxism: Patients with bruxism (teeth grinding) may not be ideal candidates for porcelain veneers due to the potential for fracture.
C. Longevity and Maintenance
- Durability: When properly bonded and maintained, porcelain veneers can last many years. Regular dental check-ups are essential to monitor the condition of the veneers and surrounding tooth structure.
- Oral Hygiene: Good oral hygiene practices are crucial to prevent caries and periodontal disease, which can compromise the longevity of the veneers.
Incipient Lesions
Characteristics of Incipient Lesions
- Body of the Lesion: The body of the incipient lesion is the largest portion during the demineralizing phase, characterized by varying pore volumes (5% at the periphery to 25% at the center).
- Striae of Retzius: The striae of Retzius are well marked in the body of the lesion, indicating areas of preferential mineral dissolution. These striae represent the incremental growth lines of enamel and are critical in understanding caries progression.
Caries Penetration
- Initial Penetration: The first penetration of caries occurs via the striae of Retzius, highlighting the importance of these structures in the carious process. Understanding this can aid in the development of preventive strategies and treatment plans aimed at early intervention and management of carious lesions.