Talk to us?

Conservative Dentistry - NEETMDS- courses
NEET MDS Lessons
Conservative Dentistry

Antimicrobial Agents in Dental Care

Antimicrobial agents play a crucial role in preventing dental caries and managing oral health. Various agents are available, each with specific mechanisms of action, antibacterial activity, persistence in the mouth, and potential side effects. This guide provides an overview of key antimicrobial agents used in dentistry, their properties, and their applications.

1. Overview of Antimicrobial Agents

A. General Use

  • Antimicrobial agents are utilized to prevent caries and manage oral microbial populations. While antibiotics may be considered in rare cases, their systemic effects must be carefully evaluated.
  • Fluoride: Known for its antimicrobial effects, fluoride helps reduce the incidence of caries.
  • Chlorhexidine: This agent has been widely used for its beneficial results in oral health, particularly in periodontal therapy and caries prevention.

2. Chlorhexidine

A. Properties and Use

  • Initial Availability: Chlorhexidine was first introduced in the United States as a rinse for periodontal therapy, typically prescribed as a 0.12% rinse for high-risk patients for short-term use.
  • Varnish Application: In other countries, chlorhexidine is used as a varnish, with professional application being the most effective mode. Chlorhexidine varnish enhances remineralization and decreases the presence of mutans streptococci (MS).

B. Mechanism of Action

  • Antiseptic Properties: Chlorhexidine acts as an antiseptic, preventing bacterial adherence and reducing microbial counts.

C. Application and Efficacy

  • Home Use: Chlorhexidine is prescribed for home use at bedtime as a 30-second rinse. This timing allows for better interaction with MS organisms due to decreased salivary flow.
  • Duration of Use: Typically used for about 2 weeks, chlorhexidine can reduce MS counts to below caries-potential levels, with sustained effects lasting 12 to 26 weeks.
  • Professional Application: It can also be applied professionally once a week for several weeks, with monitoring of microbial counts to assess effectiveness.

D. Combination with Other Measures

  • Chlorhexidine may be used in conjunction with other preventive measures for high-risk patients.

 Antimicrobial Agents

A. Antibiotics

These agents inhibit bacterial growth or kill bacteria by targeting specific cellular processes.

Agent Mechanism of Action Spectrum of Activity Persistence in Mouth Side Effects
Vancomycin Blocks cell-wall synthesis Narrow (mainly Gram-positive) Short Can increase gram-negative bacterial flora
Kanamycin Blocks protein synthesis Broad Short Not specified
Actinobolin Blocks protein synthesis Targets Streptococci Long Not specified

B. Bis-Biguanides

These are antiseptics that prevent bacterial adherence and reduce plaque formation.

Agent Mechanism of Action Spectrum of Activity Persistence in Mouth Side Effects
Alexidine Antiseptic; prevents bacterial adherence Broad Long Bitter taste; stains teeth and tongue brown; mucosal irritation
Chlorhexidine Antiseptic; prevents bacterial adherence Broad Long Bitter taste; stains teeth and tongue brown; mucosal irritation

C. Halogens

Halogen-based compounds work as bactericidal agents by disrupting microbial cell function.

Agent Mechanism of Action Spectrum of Activity Persistence in Mouth Side Effects
Iodine Bactericidal (kills bacteria) Broad Short Metallic taste

D. Fluoride

Fluoride compounds help prevent dental caries by inhibiting bacterial metabolism and strengthening enamel.

Concentration Mechanism of Action Spectrum of Activity Persistence in Mouth Side Effects
1–10 ppm Reduces acid production in bacteria Broad Long Increases enamel resistance to caries attack; fluorosis with chronic high doses in developing teeth
250 ppm Bacteriostatic (inhibits bacterial growth) Broad Long Not specified
1000 ppm Bactericidal (kills bacteria) Broad Long Not specified

Summary & Key Takeaways:

  • Antibiotics target specific bacterial processes but may lead to resistance or unwanted microbial shifts.
  • Bis-Biguanides (e.g., Chlorhexidine) are effective but cause staining and taste disturbances.
  • Halogens (e.g., Iodine) are broad-spectrum but may have unpleasant taste.
  • Fluoride plays a dual role: it reduces bacterial acid production and strengthens enamel.

Antimicrobial agents in operative dentistry include a variety of substances used to prevent infections and enhance oral health. Key agents include:

  1. Chlorhexidine: A broad-spectrum antiseptic that prevents bacterial adherence and is effective in reducing mutans streptococci. It can be used as a rinse or varnish.

  2. Fluoride: Offers antimicrobial effects at various concentrations, enhancing enamel resistance to caries and reducing acid production.

  3. Antibiotics: Such as amoxicillin and metronidazole, are used in specific cases to control infections, with careful consideration of systemic effects.

  4. Bis Biguanides: Agents like alexidine and chlorhexidine, which have long-lasting effects and can cause staining and irritation.

  5. Halogens: Iodine is bactericidal but has a short persistence in the mouth and may cause a metallic taste.

These agents are crucial for managing oral health, particularly in high-risk patients. ## Other Antimicrobial Agents in Operative Dentistry

In addition to the commonly known antimicrobial agents, several other substances are utilized in operative dentistry to prevent infections and promote oral health. Here’s a detailed overview of these agents:

1. Antiseptic Agents

  • Triclosan:

    • Mechanism of Action: A chlorinated bisphenol that disrupts bacterial cell membranes and inhibits fatty acid synthesis.
    • Applications: Often found in toothpaste and mouthwashes, it is effective in reducing plaque and gingivitis.
    • Persistence: Moderate substantivity, allowing for prolonged antibacterial effects.
  • Essential Oils:

    • Components: Includes thymol, menthol, and eucalyptol.
    • Mechanism of Action: Disrupts bacterial cell membranes and has anti-inflammatory properties.
    • Applications: Commonly used in mouthwashes, they can reduce plaque and gingivitis effectively.

2. Enzymatic Agents

  • Enzymes:
    • Mechanism of Action: Certain enzymes can activate salivary antibacterial mechanisms, aiding in the breakdown of biofilms.
    • Applications: Enzymatic toothpastes are designed to enhance the natural antibacterial properties of saliva.

3. Chemical Plaque Control Agents

  • Zinc Compounds:

    • Zinc Citrate:
      • Mechanism of Action: Exhibits antibacterial properties and inhibits plaque formation.
      • Applications: Often combined with other agents like triclosan in toothpaste formulations.
  • Sanguinarine:

    • Source: A plant extract with antimicrobial properties.
    • Applications: Available in some toothpaste and mouthwash formulations, it helps in reducing plaque and gingivitis.

4. Irrigation Solutions

  • Povidone Iodine:

    • Mechanism of Action: A broad-spectrum antiseptic that kills bacteria, viruses, and fungi.
    • Applications: Used for irrigation during surgical procedures to reduce the risk of infection.
  • Hexetidine:

    • Mechanism of Action: An antiseptic that disrupts bacterial cell membranes.
    • Applications: Found in mouthwashes, it has minimal effects on plaque but can help in managing oral infections.

5. Photodynamic Therapy (PDT)

  • Mechanism of Action: Involves the use of light-activated compounds that produce reactive oxygen species to kill bacteria.
  • Applications: Used in the treatment of periodontal diseases and localized infections, PDT can effectively reduce bacterial load without the use of traditional antibiotics.

6. Low-Level Laser Therapy (LLLT)

  • Mechanism of Action: Utilizes specific wavelengths of light to promote healing and reduce inflammation.
  • Applications: Effective in managing pain and promoting tissue repair in dental procedures, it can also help in controlling infections.

Carisolv

Carisolv is a dental caries removal system that offers a unique approach to the treatment of carious dentin. It differs from traditional methods, such as Caridex, by utilizing amino acids and a lower concentration of sodium hypochlorite. Below is an overview of its components, mechanism of action, application process, and advantages.

1. Components of Carisolv

A. Red Gel (Solution A)

  • Composition:
    • Amino Acids: Contains 0.1 M of three amino acids:
      • I-Glutamic Acid
      • I-Leucine
      • I-Lysine
    • Sodium Hydroxide (NaOH): Used to adjust pH.
    • Sodium Hypochlorite (NaOCl): Present at a lower concentration compared to Caridex.
    • Erythrosine: A dye that provides color to the gel, aiding in visualization during application.
    • Purified Water: Used as a solvent.

B. Clear Liquid (Solution B)

  • Composition:
    • Sodium Hypochlorite (NaOCl): Contains 0.5% NaOCl w/v, which contributes to the antimicrobial properties of the solution.

C. Storage and Preparation

  • Temperature: The two separate gels are stored at 48°C before use and are allowed to return to room temperature prior to application.

2. Mechanism of Action

  • Softening Carious Dentin: Carisolv is designed to soften carious dentin by chemically disrupting denatured collagen within the affected tissue.
  • Collagen Disruption: The amino acids in the formulation play a crucial role in breaking down the collagen matrix, making it easier to remove the softened carious dentin.
  • Scraping Away: After the dentin is softened, it is removed using specially designed hand instruments, allowing for precise and effective caries removal.

3. pH and Application Time

  • Resultant pH: The pH of Carisolv is approximately 11, which is alkaline and conducive to the softening process.
  • Application Time: The recommended application time for Carisolv is between 30 to 60 seconds, allowing for quick treatment of carious lesions.

4. Advantages

  • Minimally Invasive: Carisolv offers a minimally invasive approach to caries removal, preserving healthy tooth structure while effectively treating carious dentin.
  • Reduced Need for Rotary Instruments: The chemical action of Carisolv reduces the reliance on traditional rotary instruments, which can be beneficial for patients with anxiety or those requiring a gentler approach.
  • Visualization: The presence of erythrosine allows for better visualization of the treated area, helping clinicians ensure complete removal of carious tissue.

Instrument formula

First number : It indicates width of blade (or of primary cutting edge) in 1/10 th of a millimeter (i.e. no. 10 means 1 mm blade width).

Second number :

1) It indicates primary cutting edge angle.

2) It is measured form a line parallel to the long axis of the instrument handle in clockwise centigrade. Expressed as per cent of 360° (e.g. 85 means 85% of 360 = 306°).

3)The instrument is positioned so that this number always exceeds 50. If the edge is locally perpendicular to the blade, then this number is normally omitted resulting in a three number code.

Third number : It indicates blade length in millimeter.

Fourth number :

1)Indicates blade angle relative to long axis of handle in clockwise centigrade.

2) The instrument is positioned so that this number. is always 50 or less. It becomes third number in a three number code when

2nd number is omitted.

Surface Preparation for Mechanical Bonding

Methods for Producing Surface Roughness

  • Grinding and Etching: The common methods for creating surface roughness to enhance mechanical bonding include grinding or etching the surface.
    • Grinding: This method produces gross mechanical roughness but leaves a smear layer of hydroxyapatite crystals and denatured collagen approximately 1 to 3 µm thick.
    • Etching: Etching can remove the smear layer and create a more favorable surface for bonding.

Importance of Surface Preparation

  • Proper surface preparation is critical for achieving effective mechanical bonding between dental materials, ensuring the longevity and success of restorations.

Resistance Form in Dental Restorations

Resistance Form

A. Design Features

  1. Flat Pulpal and Gingival Floors:

    • Flat surfaces provide stability and help distribute occlusal forces evenly across the restoration, reducing the risk of displacement.
  2. Box-Shaped Cavity:

    • A box-shaped preparation enhances resistance by providing a larger surface area for bonding and mechanical retention.
  3. Inclusion of Weakened Tooth Structure:

    • Including weakened areas in the preparation helps to prevent fracture under masticatory forces by redistributing stress.
  4. Rounded Internal Line Angles:

    • Rounding internal line angles reduces stress concentration points, which can lead to failure of the restoration.
  5. Adequate Thickness of Restorative Material:

    • Sufficient thickness is necessary to ensure that the restoration can withstand occlusal forces without fracturing. The required thickness varies depending on the type of restorative material used.
  6. Cusp Reduction for Capping:

    • When indicated, reducing cusps helps to provide adequate support for the restoration and prevents fracture.

B. Deepening of Pulpal Floor

  • Increased Bulk: Deepening the pulpal floor increases the bulk of the restoration, enhancing its resistance to occlusal forces.

2. Features of Resistance Form

A. Box-Shaped Preparation

  • A box-shaped cavity preparation is essential for providing resistance against displacement and fracture.

B. Flat Pulpal and Gingival Floors

  • These features help the tooth resist occlusal masticatory forces without displacement.

C. Adequate Thickness of Restorative Material

  • The thickness of the restorative material should be sufficient to prevent fracture of both the remaining tooth structure and the restoration. For example:
    • High Copper Amalgam: Minimum thickness of 1.5 mm.
    • Cast Metal: Minimum thickness of 1.0 mm.
    • Porcelain: Minimum thickness of 2.0 mm.
    • Composite and Glass Ionomer: Typically require thicknesses greater than 2.5 mm due to their wear potential.

D. Restriction of External Wall Extensions

  • Limiting the extensions of external walls helps maintain strong marginal ridge areas with adequate dentin support.

E. Rounding of Internal Line Angles

  • This feature reduces stress concentration points, enhancing the overall resistance form.

F. Consideration for Cusp Capping

  • Depending on the amount of remaining tooth structure, cusp capping may be necessary to provide adequate support for the restoration.

3. Factors Affecting Resistance Form

A. Amount of Occlusal Stresses

  • The greater the occlusal forces, the more robust the resistance form must be to prevent failure.

B. Type of Restoration Used

  • Different materials have varying requirements for thickness and design to ensure adequate resistance.

C. Amount of Remaining Tooth Structure

  • The more remaining tooth structure, the better the support for the restoration, which can enhance resistance form.

Pin size

 

In general, increase in diameter of pin offers more retention but large sized pins can result in more stresses in dentin. Pins are available in four color coded sizes:

 

        Name

Pin diameter

Color code

·         Minuta

0.38 mm

Pink

·         Minikin

0.48mm

Red

·         Minim

0.61 mm

Silver

·         Regular

0.78 mm

Gold

 

Selection of pin size depends upon the following factors:

 

·            Amount of dentin present

·            Amount of retention required

 

For most posterior restorations, Minikin size of pins is used because they provide maximum retention without causing crazing in dentin.

A. Retention vs. Stress

  • Retention: Generally, an increase in the diameter of the pin offers more retention for the restoration.
  • Stress: However, larger pins can result in increased stresses in the dentin, which may lead to complications such as crazing or cracking of the tooth structure.

2. Factors Influencing Pin Size Selection

The selection of pin size depends on several factors:

A. Amount of Dentin Present

  • Assessment: The amount of remaining dentin is a critical factor in determining the appropriate pin size. More dentin allows for the use of larger pins, while less dentin may necessitate smaller pins to avoid excessive stress.

B. Amount of Retention Required

  • Retention Needs: The specific retention requirements of the restoration will also influence pin size selection. In cases where maximum retention is needed, larger pins may be considered, provided that sufficient dentin is available to accommodate them without causing damage.

3. Recommended Pin Size for Posterior Restorations

For most posterior restorations, the Minikin size pin (0.48 mm, color-coded red) is commonly used. This size provides a balance between adequate retention and minimizing the risk of causing crazing in the dentin.

Concepts in Dental Cavity Preparation and Restoration

In operative dentistry, understanding the anatomy of tooth preparations and the techniques used for effective restorations is crucial. The importance of wall convergence in Class I amalgam restorations, the use of dental floss with retainers, and specific considerations for preparing mandibular first premolars.

1. Pulpal Wall and Axial Wall

Pulpal Wall

  • Definition: The pulpal wall is an external wall of a cavity preparation that is perpendicular to both the long axis of the tooth and the occlusal surface of the pulp. It serves as a boundary for the pulp chamber.
  • Function: This wall is critical in protecting the pulp from external irritants and ensuring the integrity of the tooth structure during restorative procedures.

Axial Wall

  • Transition: Once the pulp has been removed, the pulpal wall becomes the axial wall.
  • Definition: The axial wall is an internal wall that is parallel to the long axis of the tooth. It plays a significant role in the retention and stability of the restoration.

2. Wall Convergence in Class I Amalgam Restorations

Facial and Lingual Walls

  • Convergence: In Class I amalgam restorations, the facial and lingual walls should always be made slightly occlusally convergent.
  • Importance:
    • Retention: Slight convergence helps in retaining the amalgam restoration by providing a mechanical interlock.
    • Prevention of Dislodgement: This design minimizes the risk of dislodgement of the restoration during functional loading.

Clinical Implications

  • Preparation Technique: When preparing a Class I cavity, clinicians should ensure that the facial and lingual walls are slightly angled towards the occlusal surface, promoting effective retention of the amalgam.

3. Use of Dental Floss with Retainers

Retainer Safety

  • Bow of the Retainer: The bow of the retainer should be tied with approximately 12 inches of dental floss.
  • Purpose:
    • Retrieval: The floss allows for easy retrieval of the retainer or any broken parts if they are accidentally swallowed or aspirated by the patient.
    • Patient Safety: This precaution enhances patient safety during dental procedures, particularly when using matrix retainers for restorations.

Clinical Practice

  • Implementation: Dental professionals should routinely tie dental floss to retainers as a standard safety measure, ensuring that it is easily accessible in case of an emergency.

4. Pulpal Wall Considerations in Mandibular First Premolars

Anatomy of the Mandibular First Premolar

  • Pulpal Wall Orientation: The pulpal wall of the mandibular first premolar declines lingually. This anatomical feature is important to consider during cavity preparation.
  • Pulp Horn Location:
    • The facial pulp horn is prominent and located at a higher level than the lingual pulp horn. This asymmetry necessitates careful attention during preparation to avoid pulp exposure.

Bur Positioning

  • Tilting the Bur: When preparing the cavity, the bur should be tilted lingually to prevent exposure of the facial pulp horn.
  • Technique: This technique helps ensure that the preparation is adequately shaped while protecting the pulp from inadvertent injury.

Explore by Exams