NEET MDS Lessons
Conservative Dentistry
Fillers in Conservative Dentistry
Fillers play a crucial role in the formulation of composite resins used in conservative dentistry. They are inorganic materials added to the organic matrix to enhance the physical and mechanical properties of the composite. The size and type of fillers significantly influence the performance of the composite material.
1. Types of Fillers Based on Particle Size
Fillers can be categorized based on their particle size, which affects their properties and applications:
- Macrofillers: 10 - 100 µm
- Midi Fillers: 1 - 10 µm
- Minifillers: 0.1 - 1 µm
- Microfillers: 0.01 - 0.1 µm
- Nanofillers: 0.001 - 0.01 µm
2. Composition of Fillers
The dispersed phase of composite resins is primarily made up of inorganic filler materials. Commonly used fillers include:
- Silicon Dioxide
- Boron Silicates
- Lithium Aluminum Silicates
A. Silanization
- Filler particles are often silanized to enhance bonding between the hydrophilic filler and the hydrophobic resin matrix. This process improves the overall performance and durability of the composite.
3. Effects of Filler Addition
The incorporation of fillers into composite resins leads to several beneficial effects:
- Reduces Thermal Expansion Coefficient: Enhances dimensional stability.
- Reduces Polymerization Shrinkage: Minimizes the risk of gaps between the restoration and tooth structure.
- Increases Abrasion Resistance: Improves the wear resistance of the restoration.
- Decreases Water Sorption: Reduces the likelihood of degradation over time.
- Increases Tensile and Compressive Strengths: Enhances the mechanical properties, making the restoration more durable.
- Increases Fracture Toughness: Improves the ability of the material to resist crack propagation.
- Increases Flexural Modulus: Enhances the stiffness of the composite.
- Provides Radiopacity: Allows for better visualization on radiographs.
- Improves Handling Properties: Enhances the workability of the composite during application.
- Increases Translucency: Improves the aesthetic appearance of the restoration.
4. Alternative Fillers
In some composite formulations, quartz is partially replaced with heavy metal particles such as:
- Zinc
- Aluminum
- Barium
- Strontium
- Zirconium
A. Calcium Metaphosphate
- Recently, calcium metaphosphate has been explored as a filler due to its favorable properties.
B. Wear Considerations
- These alternative fillers are generally less hard than traditional glass fillers, resulting in less wear on opposing teeth.
5. Nanoparticles in Composites
Recent advancements have introduced nanoparticles into composite formulations:
- Nanoparticles: Typically around 25 nm in size.
- Nanoaggregates: Approximately 75 nm, made from materials like zirconium/silica or nano-silica particles.
A. Benefits of Nanofillers
- The smaller size of these filler particles results in improved surface finish and polishability of the restoration, enhancing both aesthetics and performance.
Amalgam Bonding Agents
Amalgam bonding agents can be classified into several categories based on their composition and mechanism of action:
A. Adhesive Systems
- Total-Etch Systems: These systems involve etching both enamel and dentin with phosphoric acid to create a rough surface that enhances mechanical retention. After etching, a bonding agent is applied to the prepared surface before the amalgam is placed.
- Self-Etch Systems: These systems combine etching and bonding in one step, using acidic monomers that partially demineralize the tooth surface while simultaneously promoting bonding. They are less technique-sensitive than total-etch systems.
B. Glass Ionomer Cements
- Glass ionomer cements can be used as a base or liner under amalgam restorations. They bond chemically to both enamel and dentin, providing a good seal and some degree of fluoride release, which can help in caries prevention.
C. Resin-Modified Glass Ionomers
- These materials combine the properties of glass ionomer cements with added resins to improve their mechanical properties and bonding capabilities. They can be used as a liner or base under amalgam restorations.
Mechanism of Action
A. Mechanical Retention
- Amalgam bonding agents create a roughened surface on the tooth structure, which increases the surface area for mechanical interlocking between the amalgam and the tooth.
B. Chemical Bonding
- Some bonding agents form chemical bonds with the tooth structure, particularly with dentin. This chemical interaction can enhance the overall retention of the amalgam restoration.
C. Sealing the Interface
- By sealing the interface between the amalgam and the tooth, bonding agents help prevent microleakage, which can lead to secondary caries and postoperative sensitivity.
Applications of Amalgam Bonding Agents
A. Sealing Tooth Preparations
- Bonding agents are used to seal the cavity preparation before the placement of amalgam, reducing the risk of microleakage and enhancing the longevity of the restoration.
B. Bonding New to Old Amalgam
- When repairing or replacing an existing amalgam restoration, bonding agents can be used to bond new amalgam to the old amalgam, improving the overall integrity of the restoration.
C. Repairing Marginal Defects
- Bonding agents can be applied to repair marginal defects in amalgam restorations, helping to restore the seal and prevent further deterioration.
Clinical Considerations
A. Technique Sensitivity
- The effectiveness of amalgam bonding agents can be influenced by the technique used during application. Proper surface preparation, including cleaning and drying the tooth structure, is essential for optimal bonding.
B. Moisture Control
- Maintaining a dry field during the application of bonding agents is critical. Moisture contamination can compromise the bond strength and lead to restoration failure.
C. Material Compatibility
- It is important to ensure compatibility between the bonding agent and the amalgam used. Some bonding agents may not be suitable for all types of amalgam, so clinicians should follow manufacturer recommendations.
D. Longevity and Performance
- While amalgam bonding agents can enhance the performance of amalgam restorations, their long-term effectiveness can vary. Regular monitoring of restorations is essential to identify any signs of failure or degradation.
Early Childhood Caries (ECC) Classification
Early Childhood Caries (ECC) is a significant public health concern characterized by the presence of carious lesions in young children. It is classified into three types based on severity, affected teeth, and underlying causes. Understanding these classifications helps in diagnosing, preventing, and managing ECC effectively.
Type I ECC (Mild to Moderate)
A. Characteristics
- Affected Teeth: Carious lesions primarily involve the molars and incisors.
- Age Group: Typically observed in children aged 2 to 5 years.
B. Causes
- Dietary Factors: The primary cause is usually a combination of cariogenic semisolid or solid foods, such as sugary snacks and beverages.
- Oral Hygiene: Lack of proper oral hygiene practices contributes significantly to the development of caries.
- Progression: As the cariogenic challenge persists, the number of affected teeth tends to increase.
C. Clinical Implications
- Management: Emphasis on improving oral hygiene practices and dietary modifications can help control and reverse early carious lesions.
Type II ECC (Moderate to Severe)
A. Characteristics
- Affected Teeth: Labio-lingual carious lesions primarily affect the maxillary incisors, with or without molar caries, depending on the child's age.
- Age Group: Typically seen soon after the first tooth erupts.
B. Causes
- Feeding Practices: Common causes include inappropriate use of feeding bottles, at-will breastfeeding, or a combination of both.
- Oral Hygiene: Poor oral hygiene practices exacerbate the condition.
- Progression: If not controlled, Type II ECC can progress to more advanced stages of caries.
C. Clinical Implications
- Intervention: Early intervention is crucial, including education on proper feeding practices and oral hygiene to prevent further carious development.
Type III ECC (Severe)
A. Characteristics
- Affected Teeth: Carious lesions involve almost all teeth, including the mandibular incisors.
- Age Group: Usually observed in children aged 3 to 5 years.
B. Causes
- Multifactorial: The etiology is a combination of various factors, including poor oral hygiene, dietary habits, and possibly socio-economic factors.
- Rampant Nature: This type of ECC is rampant and can affect immune tooth surfaces, leading to extensive decay.
C. Clinical Implications
- Management: Requires comprehensive dental treatment, including restorative procedures and possibly extractions. Education on preventive measures and regular dental visits are essential to manage and prevent recurrence.
Glass ionomer cement is a tooth coloured material
Material was based on reaction between silicate glass powder & polyacrylicacid.
They bond chemically to tooth structure & release fluoride for relatively long period
CLASSIFICATION
Type I. For luting
Type II. For restoration
Type II.1 Restorative esthetic
Type II.2 Restorative reinforced
Type III. For liner & bases
Type IV. Fissure & sealent
Type V. As Orthodontic cement
Type VI. For core build up
Physical Properties
1. Low solubility
2. Coefficient of thermal expansion similar to dentin
3. Fluoride release and fluoride recharge
4. High compressive strengths
5. Bonds to tooth structure
6. Low flexural strength
7. Low shear strength
8. Dimensional change (slight expansion) (shrinks on setting, expands with water sorption)
9. Brittle
10.Lacks translucency
11.Rough surface texture
Indications for use of Type II glass ionomer cements
1) non-stress bearing areas
2) class III and V restorations in adults
3) class I and II restorations in primary dentition
4) temporary or “caries control” restorations
5) crown margin repairs
6) cement base under amalgam, resin, ceramics, direct and indirect gold
7) core buildups when at least 3 walls of tooth are remaining (after crown preparation)
Contraindications
1) high stress applications I. class IV and class II restorations II. cusp replacement III. core build-ups with less than 3 sound walls remaining
Composition
Factors affecting the rate or setting
1. Glass composition:Higher Alumina – Silica ratio, faster set and shorter working time.
2. Particle Size: finer the powder, faster the set.
3. Addition of Tartaric Acid:-Sharpens set without shortening the working time.
4. Relative proportions of the constituents: Greater the proportion of glass and lower the proportion of water, the faster the set.
5. Temperature
Setting Time
Type 1 - 4-5 min
type II - 7 min
PROPERTIES
Adhesion :
- Glass ionomer cement bonds chemically to the tooth structure->reaction occur between carboxyl group of poly acid & calcium of hydroxyl apatite.
- Bonding with enamel is higher than that of dentin ,due to greater inorganic content.
Esthetics :
-GIC is tooth coloured material & available in different shades.
Inferior to composites.
They lack translucency & rough surface texture.
Potential for discolouration & staining.
Biocompatibilty :
- Pulpal response to glass ionomer cement is favorable.
- Pulpal response is mild due to
- High buffering capacity of hydroxy apatite.
- Large molecular weight of the polyacrylic acid ,which prevents entry into dentinal tubules.
a) Pulp reaction – ZOE < Glass Ionomer < Zinc Phosphate
b) Powder:liquid ratio influences acidity
c) Solubility & Disintegration:-Initial solubility is high due to leaching of intermediate products.The complete setting reaction takes place in 24 hrs, cement should be protected from saliva during this period.
Anticariogenic properties :
- Fluoride is released from glass ionomer at the time of mixing & lies with in matrix.
Fluoride can be released out without affecting the physical properties of cement.
ADVANTAGE DISADVANTAGE
Dental Amalgam and Direct Gold Restorations
In restorative dentistry, understanding the properties of materials and the techniques used for their application is essential for achieving optimal outcomes. .
1. Mechanical Properties of Amalgam
Compressive and Tensile Strength
- Compressive Strength: Amalgam exhibits high compressive strength, which is essential for withstanding the forces of mastication. The minimum compressive strength of amalgam should be at least 310 MPa.
- Tensile Strength: Amalgam has relatively low tensile strength, typically ranging between 48-70 MPa. This characteristic makes it more susceptible to fracture under tensile forces, which is why proper cavity design and placement techniques are critical.
Implications for Use
- Cavity Design: The design of the cavity preparation should minimize the risk of tensile forces acting on the restoration. This can be achieved through appropriate wall angles and retention features.
- Restoration Longevity: Understanding the mechanical properties of amalgam helps clinicians predict the longevity and performance of the restoration under functional loads.
2. Direct Gold Restorations
Requirements for Direct Gold Restorations
- Ideal Surgical Field: A clean and dry field is essential for the successful placement of direct gold restorations. This ensures that the gold adheres properly and that contamination is minimized.
- Conservative Cavity Preparation: The cavity preparation must be methodical and conservative, preserving as much healthy tooth structure as possible while providing adequate retention for the gold.
- Systematic Condensation: The condensation of gold must be performed carefully to build a solid block of gold within the tooth. This involves using appropriate instruments and techniques to ensure that the gold is well-adapted to the cavity walls.
Condensation Technique
- Building a Solid Block: The goal of the condensation procedure is to create a dense, solid mass of gold that will withstand occlusal forces and provide a durable restoration.
3. Gingival Displacement Techniques
Materials for Displacement
To effectively displace the gingival tissue during restorative procedures, various materials can be used, including:
- Heavy Weight Rubber Dam: Provides excellent isolation and displacement of gingival tissue.
- Plain Cotton Thread: A simple and effective method for gingival displacement.
- Epinephrine-Saturated String:
- 1:1000 Epinephrine: Used for 10 minutes; not recommended for cardiac patients due to potential systemic effects.
- Aluminum Chloride Solutions:
- 5% Aluminum Chloride Solution: Used for gingival displacement.
- 20% Tannic Acid: Another option for controlling bleeding and displacing tissue.
- 4% Levo Epinephrine with 9% Potassium Aluminum: Used for 10 minutes.
- Zinc Chloride or Ferric Sulfate:
- 8% Zinc Chloride: Used for 3 minutes.
- Ferric Sub Sulfate: Also used for 3 minutes.
Clinical Considerations
- Selection of Material: The choice of material for gingival displacement should be based on the clinical situation, patient health, and the specific requirements of the procedure.
4. Condensation Technique for Gold
Force Application
- Angle of Condensation: The force of condensation should be applied at a 45-degree angle to the cavity walls and floor during malleting. This orientation allows for maximum adaptation of the gold against the walls, floors, line angles, and point angles of the cavity.
- Direction of Force: The forces must be directed at 90 degrees to any previously condensed gold. This technique ensures that the gold is compacted effectively and that there are no voids or gaps in the restoration.
Importance of Technique
- Adaptation and Density: Proper condensation technique is critical for achieving optimal adaptation and density of the gold restoration, which contributes to its longevity and performance.
Resistance Form in Dental Restorations
Resistance Form
A. Design Features
-
Flat Pulpal and Gingival Floors:
- Flat surfaces provide stability and help distribute occlusal forces evenly across the restoration, reducing the risk of displacement.
-
Box-Shaped Cavity:
- A box-shaped preparation enhances resistance by providing a larger surface area for bonding and mechanical retention.
-
Inclusion of Weakened Tooth Structure:
- Including weakened areas in the preparation helps to prevent fracture under masticatory forces by redistributing stress.
-
Rounded Internal Line Angles:
- Rounding internal line angles reduces stress concentration points, which can lead to failure of the restoration.
-
Adequate Thickness of Restorative Material:
- Sufficient thickness is necessary to ensure that the restoration can withstand occlusal forces without fracturing. The required thickness varies depending on the type of restorative material used.
-
Cusp Reduction for Capping:
- When indicated, reducing cusps helps to provide adequate support for the restoration and prevents fracture.
B. Deepening of Pulpal Floor
- Increased Bulk: Deepening the pulpal floor increases the bulk of the restoration, enhancing its resistance to occlusal forces.
2. Features of Resistance Form
A. Box-Shaped Preparation
- A box-shaped cavity preparation is essential for providing resistance against displacement and fracture.
B. Flat Pulpal and Gingival Floors
- These features help the tooth resist occlusal masticatory forces without displacement.
C. Adequate Thickness of Restorative Material
- The thickness of the restorative material should be sufficient to
prevent fracture of both the remaining tooth structure and the restoration.
For example:
- High Copper Amalgam: Minimum thickness of 1.5 mm.
- Cast Metal: Minimum thickness of 1.0 mm.
- Porcelain: Minimum thickness of 2.0 mm.
- Composite and Glass Ionomer: Typically require thicknesses greater than 2.5 mm due to their wear potential.
D. Restriction of External Wall Extensions
- Limiting the extensions of external walls helps maintain strong marginal ridge areas with adequate dentin support.
E. Rounding of Internal Line Angles
- This feature reduces stress concentration points, enhancing the overall resistance form.
F. Consideration for Cusp Capping
- Depending on the amount of remaining tooth structure, cusp capping may be necessary to provide adequate support for the restoration.
3. Factors Affecting Resistance Form
A. Amount of Occlusal Stresses
- The greater the occlusal forces, the more robust the resistance form must be to prevent failure.
B. Type of Restoration Used
- Different materials have varying requirements for thickness and design to ensure adequate resistance.
C. Amount of Remaining Tooth Structure
- The more remaining tooth structure, the better the support for the restoration, which can enhance resistance form.
Antimicrobial Agents in Dental Care
Antimicrobial agents play a crucial role in preventing dental caries and managing oral health. Various agents are available, each with specific mechanisms of action, antibacterial activity, persistence in the mouth, and potential side effects. This guide provides an overview of key antimicrobial agents used in dentistry, their properties, and their applications.
1. Overview of Antimicrobial Agents
A. General Use
- Antimicrobial agents are utilized to prevent caries and manage oral microbial populations. While antibiotics may be considered in rare cases, their systemic effects must be carefully evaluated.
- Fluoride: Known for its antimicrobial effects, fluoride helps reduce the incidence of caries.
- Chlorhexidine: This agent has been widely used for its beneficial results in oral health, particularly in periodontal therapy and caries prevention.
2. Chlorhexidine
A. Properties and Use
- Initial Availability: Chlorhexidine was first introduced in the United States as a rinse for periodontal therapy, typically prescribed as a 0.12% rinse for high-risk patients for short-term use.
- Varnish Application: In other countries, chlorhexidine is used as a varnish, with professional application being the most effective mode. Chlorhexidine varnish enhances remineralization and decreases the presence of mutans streptococci (MS).
B. Mechanism of Action
- Antiseptic Properties: Chlorhexidine acts as an antiseptic, preventing bacterial adherence and reducing microbial counts.
C. Application and Efficacy
- Home Use: Chlorhexidine is prescribed for home use at bedtime as a 30-second rinse. This timing allows for better interaction with MS organisms due to decreased salivary flow.
- Duration of Use: Typically used for about 2 weeks, chlorhexidine can reduce MS counts to below caries-potential levels, with sustained effects lasting 12 to 26 weeks.
- Professional Application: It can also be applied professionally once a week for several weeks, with monitoring of microbial counts to assess effectiveness.
D. Combination with Other Measures
- Chlorhexidine may be used in conjunction with other preventive measures for high-risk patients.
Antimicrobial Agents
A. Antibiotics
These agents inhibit bacterial growth or kill bacteria by targeting specific cellular processes.
| Agent | Mechanism of Action | Spectrum of Activity | Persistence in Mouth | Side Effects |
|---|---|---|---|---|
| Vancomycin | Blocks cell-wall synthesis | Narrow (mainly Gram-positive) | Short | Can increase gram-negative bacterial flora |
| Kanamycin | Blocks protein synthesis | Broad | Short | Not specified |
| Actinobolin | Blocks protein synthesis | Targets Streptococci | Long | Not specified |
B. Bis-Biguanides
These are antiseptics that prevent bacterial adherence and reduce plaque formation.
| Agent | Mechanism of Action | Spectrum of Activity | Persistence in Mouth | Side Effects |
|---|---|---|---|---|
| Alexidine | Antiseptic; prevents bacterial adherence | Broad | Long | Bitter taste; stains teeth and tongue brown; mucosal irritation |
| Chlorhexidine | Antiseptic; prevents bacterial adherence | Broad | Long | Bitter taste; stains teeth and tongue brown; mucosal irritation |
C. Halogens
Halogen-based compounds work as bactericidal agents by disrupting microbial cell function.
| Agent | Mechanism of Action | Spectrum of Activity | Persistence in Mouth | Side Effects |
|---|---|---|---|---|
| Iodine | Bactericidal (kills bacteria) | Broad | Short | Metallic taste |
D. Fluoride
Fluoride compounds help prevent dental caries by inhibiting bacterial metabolism and strengthening enamel.
| Concentration | Mechanism of Action | Spectrum of Activity | Persistence in Mouth | Side Effects |
|---|---|---|---|---|
| 1–10 ppm | Reduces acid production in bacteria | Broad | Long | Increases enamel resistance to caries attack; fluorosis with chronic high doses in developing teeth |
| 250 ppm | Bacteriostatic (inhibits bacterial growth) | Broad | Long | Not specified |
| 1000 ppm | Bactericidal (kills bacteria) | Broad | Long | Not specified |
Summary & Key Takeaways:
- Antibiotics target specific bacterial processes but may lead to resistance or unwanted microbial shifts.
- Bis-Biguanides (e.g., Chlorhexidine) are effective but cause staining and taste disturbances.
- Halogens (e.g., Iodine) are broad-spectrum but may have unpleasant taste.
- Fluoride plays a dual role: it reduces bacterial acid production and strengthens enamel.
Antimicrobial agents in operative dentistry include a variety of substances used to prevent infections and enhance oral health. Key agents include:
-
Chlorhexidine: A broad-spectrum antiseptic that prevents bacterial adherence and is effective in reducing mutans streptococci. It can be used as a rinse or varnish.
-
Fluoride: Offers antimicrobial effects at various concentrations, enhancing enamel resistance to caries and reducing acid production.
-
Antibiotics: Such as amoxicillin and metronidazole, are used in specific cases to control infections, with careful consideration of systemic effects.
-
Bis Biguanides: Agents like alexidine and chlorhexidine, which have long-lasting effects and can cause staining and irritation.
-
Halogens: Iodine is bactericidal but has a short persistence in the mouth and may cause a metallic taste.
These agents are crucial for managing oral health, particularly in high-risk patients. ## Other Antimicrobial Agents in Operative Dentistry
In addition to the commonly known antimicrobial agents, several other substances are utilized in operative dentistry to prevent infections and promote oral health. Here’s a detailed overview of these agents:
1. Antiseptic Agents
-
Triclosan:
- Mechanism of Action: A chlorinated bisphenol that disrupts bacterial cell membranes and inhibits fatty acid synthesis.
- Applications: Often found in toothpaste and mouthwashes, it is effective in reducing plaque and gingivitis.
- Persistence: Moderate substantivity, allowing for prolonged antibacterial effects.
-
Essential Oils:
- Components: Includes thymol, menthol, and eucalyptol.
- Mechanism of Action: Disrupts bacterial cell membranes and has anti-inflammatory properties.
- Applications: Commonly used in mouthwashes, they can reduce plaque and gingivitis effectively.
2. Enzymatic Agents
- Enzymes:
- Mechanism of Action: Certain enzymes can activate salivary antibacterial mechanisms, aiding in the breakdown of biofilms.
- Applications: Enzymatic toothpastes are designed to enhance the natural antibacterial properties of saliva.
3. Chemical Plaque Control Agents
-
Zinc Compounds:
- Zinc Citrate:
- Mechanism of Action: Exhibits antibacterial properties and inhibits plaque formation.
- Applications: Often combined with other agents like triclosan in toothpaste formulations.
- Zinc Citrate:
-
Sanguinarine:
- Source: A plant extract with antimicrobial properties.
- Applications: Available in some toothpaste and mouthwash formulations, it helps in reducing plaque and gingivitis.
4. Irrigation Solutions
-
Povidone Iodine:
- Mechanism of Action: A broad-spectrum antiseptic that kills bacteria, viruses, and fungi.
- Applications: Used for irrigation during surgical procedures to reduce the risk of infection.
-
Hexetidine:
- Mechanism of Action: An antiseptic that disrupts bacterial cell membranes.
- Applications: Found in mouthwashes, it has minimal effects on plaque but can help in managing oral infections.
5. Photodynamic Therapy (PDT)
- Mechanism of Action: Involves the use of light-activated compounds that produce reactive oxygen species to kill bacteria.
- Applications: Used in the treatment of periodontal diseases and localized infections, PDT can effectively reduce bacterial load without the use of traditional antibiotics.
6. Low-Level Laser Therapy (LLLT)
- Mechanism of Action: Utilizes specific wavelengths of light to promote healing and reduce inflammation.
- Applications: Effective in managing pain and promoting tissue repair in dental procedures, it can also help in controlling infections.