Talk to us?

Conservative Dentistry - NEETMDS- courses
NEET MDS Lessons
Conservative Dentistry

Recent Advances in Restorative Dentistry

Restorative dentistry has seen significant advancements in materials and techniques that enhance the effectiveness, efficiency, and aesthetic outcomes of dental treatments. Below are some of the notable recent innovations in restorative dentistry:

1. Teric Evoflow

A. Description

  • Type: Nano-optimized flow composite.
  • Characteristics:
    • Optimum Surface Affinity: Designed to adhere well to tooth surfaces.
    • Penetration: Capable of penetrating into areas that are difficult to reach, making it ideal for various restorative applications.

B. Applications

  • Class V Restorations: Particularly suitable for Class V cavities, which are often challenging due to their location and shape.
  • Extended Fissure Sealing: Effective for sealing deep fissures in teeth to prevent caries.
  • Adhesive Cementation Techniques: Can be used as an initial layer under medium-viscosity composites, enhancing the overall bonding and restoration process.

2. GO

A. Description

  • Type: Super quick adhesive.
  • Characteristics:
    • Time Efficiency: Designed to save valuable chair time during dental procedures.
    • Ease of Use: Fast application process, allowing for quicker restorations without compromising quality.

B. Applications

  • Versatile Use: Suitable for various adhesive applications in restorative dentistry, enhancing workflow efficiency.

3. New Optidisc

A. Description

  • Type: Finishing and polishing discs.
  • Characteristics:
    • Three-Grit System: Utilizes a three-grit system instead of the traditional four, aimed at achieving a higher surface gloss on restorations.
    • Extra Coarse Disc: An additional extra coarse disc is available for gross removal of material before the finishing and polishing stages.

B. Applications

  • Final Polish: Allows restorations to achieve a final polish that closely resembles the natural dentition, improving aesthetic outcomes and patient satisfaction.

4. Interval II Plus

A. Description

  • Type: Temporary filling material.
  • Composition: Made with glass ionomer and leachable fluoride.
  • Packaging: Available in a convenient 5 gm syringe.

B. Characteristics

  • Dependable: A one-component, ready-mixed material that simplifies the application process.
  • Safety: Safe to use on resin-based materials, as it does not contain zinc oxide eugenol (ZOE), which can interfere with bonding.

C. Applications

  • Temporary Restorations: Ideal for use in temporary fillings, providing a reliable and effective solution for managing carious lesions until permanent restorations can be placed.

Cariogram: A Visual Tool for Understanding Caries Risk

The Cariogram is a graphical representation developed by Brathall et al. in 1999 to illustrate the interaction of various factors contributing to the development of dental caries. This tool helps dental professionals and patients understand the multifactorial nature of caries and assess individual risk levels.

1. Overview of the Cariogram

  • Purpose: The Cariogram visually represents the interplay between different factors that influence caries development, allowing for a comprehensive assessment of an individual's caries risk.
  • Structure: The Cariogram is depicted as a pie chart divided into five distinct sectors, each representing a specific contributing factor.

2. Sectors of the Cariogram

A. Green Sector: Chance to Avoid Caries

  • Description: This sector estimates the likelihood of avoiding caries based on the individual's overall risk profile.
  • Significance: A larger green area indicates a higher chance of avoiding caries, reflecting effective preventive measures and good oral hygiene practices.

B. Dark Blue Sector: Diet

  • Description: This sector assesses dietary factors, including the content and frequency of sugar consumption.
  • Components: It considers both the types of foods consumed (e.g., sugary snacks, acidic beverages) and how often they are eaten.
  • Significance: A smaller dark blue area suggests a diet that is less conducive to caries development, while a larger area indicates a higher risk due to frequent sugar intake.

C. Red Sector: Bacteria

  • Description: This sector evaluates the bacterial load in the mouth, particularly focusing on the amount of plaque and the presence of Streptococcus mutans.
  • Components: It takes into account the quantity of plaque accumulation and the specific types of bacteria present.
  • Significance: A larger red area indicates a higher bacterial presence, which correlates with an increased risk of caries.

D. Light Blue Sector: Susceptibility

  • Description: This sector reflects the individual's susceptibility to caries, influenced by factors such as fluoride exposure, saliva secretion, and saliva buffering capacity.
  • Components: It considers the effectiveness of fluoride programs, the volume of saliva produced, and the saliva's ability to neutralize acids.
  • Significance: A larger light blue area suggests greater susceptibility to caries, while a smaller area indicates protective factors are in place.

E. Yellow Sector: Circumstances

  • Description: This sector encompasses the individual's past caries experience and any related health conditions that may affect caries risk.
  • Components: It includes the history of previous caries, dental treatments, and systemic diseases that may influence oral health.
  • Significance: A larger yellow area indicates a higher risk based on past experiences and health conditions, while a smaller area suggests a more favorable history.

3. Clinical Implications of the Cariogram

A. Personalized Risk Assessment

  • The Cariogram provides a visual and intuitive way to assess an individual's caries risk, allowing for tailored preventive strategies based on specific factors.

B. Patient Education

  • By using the Cariogram, dental professionals can effectively communicate the multifactorial nature of caries to patients, helping them understand how their diet, oral hygiene, and other factors contribute to their risk.

C. Targeted Interventions

  • The information derived from the Cariogram can guide dental professionals in developing targeted interventions, such as dietary counseling, fluoride treatments, and improved oral hygiene practices.

D. Monitoring Progress

  • The Cariogram can be used over time to monitor changes in an individual's caries risk profile, allowing for adjustments in preventive strategies as needed.

Inlay Preparation

Inlay preparations are a common restorative procedure in dentistry, particularly for Class II restorations.

1. Definitions

A. Inlay

  • An inlay is a restoration that is fabricated using an indirect procedure. It involves one or more tooth surfaces and may cap one or more cusps but does not cover all cusps.

2. Class II Inlay (Cast Metal) Preparation Procedure

A. Burs Used

  • Recommended Burs:
    • No. 271: For initial cavity preparation.
    • No. 169 L: For refining the cavity shape and creating the proximal box.

B. Initial Cavity Preparation

  • Similar to Class II Amalgam: The initial cavity preparation is performed similarly to that for Class II amalgam restorations, with the following differences:
    • Occlusal Entry Cut Depth: The initial occlusal entry should be approximately 1.5 mm deep.
    • Cavity Margins Divergence: All cavity margins must diverge occlusally by 2-5 degrees:
      • 2 degrees: When the vertical walls of the cavity are short.
      • 5 degrees: When the vertical walls are long.
    • Proximal Box Margins: The proximal box margins should clear the adjacent tooth by 0.2-0.5 mm, with 0.5 ± 0.2 mm being ideal.

C. Preparation of Bevels and Flares

  • Primary and Secondary Flares:
    • Flares are created on the facial and lingual proximal walls, forming the walls in two planes.
    • The secondary flare widens the proximal box, which initially had a clearance of 0.5 mm from the adjacent tooth. This results in:
      • Marginal Metal in Embrasure Area: Placing the marginal metal in the embrasure area allows for better self-cleansing and easier access for cleaning and polishing without excessive dentin removal.
      • Marginal Metal Angle: A 40-degree angle, which is easily burnishable and strong.
      • Enamel Margin Angle: A 140-degree angle, which blunts the enamel margin and increases its strength.
    • Note: Secondary flares are omitted on the mesiofacial proximal walls of maxillary premolars and first molars for esthetic reasons.

D. Gingival Bevels

  • Width: Gingival bevels should be 0.5-1 mm wide and blend with the secondary flare, resulting in a marginal metal angle of 30 degrees.
  • Purpose:
    • Removal of weak enamel.
    • Creation of a burnishable 30-degree marginal metal.
    • Production of a lap sliding fit at the gingival margin.

E. Occlusal Bevels

  • Location: Present on the cavosurface margins of the cavity on the occlusal surface.
  • Width: Approximately 1/4th the depth of the respective wall, resulting in a marginal metal angle of 40 degrees.

3. Capping Cusps

A. Indications

  • Cusp Involvement: Capping cusps is indicated when more than 1/2 of a cusp is involved and is mandatory when 2/3 or more is involved.

B. Advantages

  • Weak Enamel Removal: Helps in removing weak enamel.
  • Cavity Margin Location: Moves the cavity margin away from occlusal areas subjected to heavy forces.
  • Visualization of Caries: Aids in visualizing the extent of caries, increasing convenience during preparation.

C. Cusp Reduction

  • Uniform Metal Thickness: Cusp reduction must provide for a uniform 1.5 mm metal thickness over the reduced cusps.
  • Facial Cusp Reduction: For maxillary premolars and first molars, the reduction of the facial cusp should be 0.75-1 mm for esthetic reasons.

D. Reverse Bevel (Counter Bevel)

  • Definition: A bevel given on the margins of the reduced cusp.
  • Width: Varies to extend beyond any occlusal contact with opposing teeth, resulting in a marginal metal angle of 30 degrees.

E. Retention Considerations

  • Retention Form: Cusp reduction decreases the retention form due to reduced vertical wall height. Therefore, proximal retentive grooves are usually recommended.
  • Collar and Skirt Features: These features can enhance retention and resistance form.

Nursing Bottle Caries

Nursing bottle caries, also known as early childhood caries (ECC), is a significant dental issue that affects infants and young children. Understanding the etiological agents involved in this condition is crucial for prevention and management. .

1. Pathogenic Microorganism

A. Streptococcus mutans

  • RoleStreptococcus mutans is the primary microorganism responsible for the development of nursing bottle caries. It colonizes the teeth after they erupt into the oral cavity.
  • Transmission: This bacterium is typically transmitted to the infant’s mouth from the mother, often through saliva.
  • Virulence Factors:
    • Colonization: It effectively adheres to tooth surfaces, establishing a foothold for caries development.
    • Acid ProductionS. mutans produces large amounts of acid as a byproduct of carbohydrate fermentation, leading to demineralization of tooth enamel.
    • Extracellular Polysaccharides: It synthesizes significant quantities of extracellular polysaccharides, which promote plaque formation and enhance bacterial adherence to teeth.

2. Substrate (Fermentable Carbohydrates)

A. Sources of Fermentable Carbohydrates

  • Fermentable carbohydrates are utilized by S. mutans to form dextrans, which facilitate bacterial adhesion to tooth surfaces and contribute to acid production. Common sources include:
    • Bovine Milk or Milk Formulas: Often high in lactose, which can be fermented by bacteria.
    • Human Milk: Breastfeeding on demand can expose teeth to sugars.
    • Fruit Juices and Sweet Liquids: These are often high in sugars and can contribute to caries.
    • Sweet Syrups: Such as those found in vitamin preparations.
    • Pacifiers Dipped in Sugary Solutions: This practice can introduce sugars directly to the oral cavity.
    • Chocolates and Other Sweets: These can provide a continuous source of fermentable carbohydrates.

3. Host Factors

A. Tooth Structure

  • Host for Microorganisms: The tooth itself serves as the host for S. mutans and other cariogenic bacteria.
  • Susceptibility Factors:
    • Hypomineralization or Hypoplasia: Defects in enamel development can increase susceptibility to caries.
    • Thin Enamel and Developmental Grooves: These anatomical features can create areas that are more prone to plaque accumulation and caries.

4. Time

A. Duration of Exposure

  • Sleeping with a Bottle: The longer a child sleeps with a bottle in their mouth, the higher the risk of developing caries. This is due to:
    • Decreased Salivary Flow: Saliva plays a crucial role in neutralizing acids and washing away food particles.
    • Prolonged Carbohydrate Accumulation: The swallowing reflex is diminished during sleep, allowing carbohydrates to remain in the mouth longer.

5. Other Predisposing Factors

  • Parental Overindulgence: Excessive use of sugary foods and drinks can increase caries risk.
  • Sleep Patterns: Children who sleep less may have increased exposure to cariogenic factors.
  • Malnutrition: Nutritional deficiencies can affect oral health and increase susceptibility to caries.
  • Crowded Living Conditions: These may limit access to dental care and hygiene practices.
  • Decreased Salivary Function: Conditions such as iron deficiency and exposure to lead can impair salivary function, increasing caries susceptibility.

Clinical Features of Nursing Bottle Caries

  • Intraoral Decay Pattern: The decay pattern associated with nursing bottle caries is characteristic and pathognomonic, often involving the maxillary incisors and molars.
  • Progression of Lesions: Lesions typically progress rapidly, leading to extensive decay if not addressed promptly.

Management of Nursing Bottle Caries

First Visit

  • Lesion Management: Excavation and restoration of carious lesions.
  • Abscess Drainage: If present, abscesses should be drained.
  • Radiographs: Obtain necessary imaging to assess the extent of caries.
  • Diet Chart: Provide a diet chart for parents to record the child's diet for one week.
  • Parent Counseling: Educate parents on oral hygiene and dietary practices.
  • Topical Fluoride: Administer topical fluoride to strengthen enamel.

Second Visit

  • Diet Analysis: Review the diet chart with the parents.
  • Sugar Control: Identify and isolate sugar sources in the diet and provide instructions to control sugar exposure.
  • Caries Activity Tests: Conduct tests to assess the activity of carious lesions.

Third Visit

  • Endodontic Treatment: If necessary, perform root canal treatment on affected teeth.
  • Extractions: Remove any non-restorable teeth, followed by space maintenance if needed.
  • Crowns: Place crowns on teeth that require restoration.
  • Recall Schedule: Schedule follow-up visits every three months to monitor progress and maintain oral health.

Diagnostic Methods for Early Caries Detection

Early detection of caries is essential for effective management and treatment. Various diagnostic methods can be employed to identify caries activity at early stages:

1. Identification of Subsurface Demineralization

  • Inspection: Visual examination of the tooth surface for signs of demineralization, such as white spots or discoloration.
  • Radiographic Methods: X-rays can reveal subsurface carious lesions that are not visible to the naked eye, allowing for early intervention.
  • Dye Uptake Methods: Application of specific dyes that can penetrate demineralized areas, highlighting the extent of carious lesions.

2. Bacterial Testing

  • Microbial Analysis: Testing for the presence of specific cariogenic bacteria (e.g., Streptococcus mutans) can provide insight into the caries risk and activity level.
  • Salivary Testing: Salivary samples can be analyzed for bacterial counts, which can help assess the risk of caries development.

3. Assessment of Environmental Conditions

  • pH Measurement: Monitoring the pH of saliva can indicate the potential for demineralization. A lower pH (acidic environment) is conducive to caries development.
  • Salivary Flow: Evaluating salivary flow rates can help determine the protective capacity of saliva against caries. Reduced salivary flow can increase caries risk.
  • Salivary Buffering Capacity: The ability of saliva to neutralize acids is crucial for maintaining oral health. Assessing this capacity can provide valuable information about caries risk.

Film Thickness of Dental Cements

The film thickness of dental cements is an important property that can influence the effectiveness of the material in various dental applications, including luting agents, bases, and liners. .

1. Importance of Film Thickness

A. Clinical Implications

  • Sealing Ability: The film thickness of a cement can affect its ability to create a proper seal between the restoration and the tooth structure. Thicker films may lead to gaps and reduced retention.
  • Adaptation: A thinner film allows for better adaptation to the irregularities of the tooth surface, which is crucial for minimizing microleakage and ensuring the longevity of the restoration.

B. Material Selection

  • Choosing the Right Cement: Understanding the film thickness of different cements helps clinicians select the appropriate material for specific applications, such as luting crowns, bridges, or other restorations.

2. Summary of Film Thickness

  • Zinc Phosphate: 20 mm – Known for its strength and durability, often used for cementing crowns and bridges.
  • Zinc Oxide Eugenol (ZOE), Type I: 25 mm – Commonly used for temporary restorations and as a base under other materials.
  • ZOE + Alumina + EBA (Type II): 25 mm – Offers improved properties for specific applications.
  • ZOE + Polymer (Type II): 32 mm – Provides enhanced strength and flexibility.
  • Silicophosphate: 25 mm – Used for its aesthetic properties and good adhesion.
  • Resin Cement: < 25 mm – Offers excellent bonding and low film thickness, making it ideal for aesthetic restorations.
  • Polycarboxylate: 21 mm – Known for its biocompatibility and moderate strength.
  • ** Glass Ionomer: 24 mm – Valued for its fluoride release and ability to bond chemically to tooth structure, making it suitable for various restorative applications.

Spray Particles in the Dental Operatory

1. Aerosols

Aerosols are composed of invisible particles that range in size from approximately 5 micrometers (µm) to 50 micrometers (µm).

Characteristics

  • Suspension: Aerosols can remain suspended in the air for extended periods, often for hours, depending on environmental conditions.
  • Transmission of Infection: Because aerosols can carry infectious agents, they pose a risk for the transmission of respiratory infections, including those caused by bacteria and viruses.

Clinical Implications

  • Infection Control: Dental professionals must implement appropriate infection control measures, such as the use of personal protective equipment (PPE) and effective ventilation systems, to minimize exposure to aerosols.

2. Mists


Mists are visible droplets that are larger than aerosols, typically estimated to be around 50 micrometers (µm) in diameter.

Characteristics

  • Visibility: Mists can be seen in a beam of light, making them distinguishable from aerosols.
  • Settling Time: Heavy mists tend to settle gradually from the air within 5 to 15 minutes after being generated.

Clinical Implications

  • Infection Risk: Mists produced by patients with respiratory infections, such as tuberculosis, can transmit pathogens. Dental personnel should be cautious and use appropriate protective measures when treating patients with known respiratory conditions.

3. Spatter


Spatter consists of larger particles, generally greater than 50 micrometers (µm), and includes visible splashes.

Characteristics

  • Trajectory: Spatter has a distinct trajectory and typically falls within 3 feet of the patient’s mouth.
  • Potential for Coating: Spatter can coat the face and outer garments of dental personnel, increasing the risk of exposure to infectious agents.

Clinical Implications

  • Infection Pathways: Spatter or splashing onto mucosal surfaces is considered a potential route of infection for dental personnel, particularly concerning blood-borne pathogens.
  • Protective Measures: The use of face shields, masks, and protective clothing is essential to minimize the risk of exposure to spatter during dental procedures.

4. Droplets


Droplets are larger than aerosols and mists, typically ranging from 5 to 100 micrometers in diameter. They are formed during procedures that involve the use of water or saliva, such as ultrasonic scaling or high-speed handpieces.

Characteristics

  • Size and Behavior: Droplets can be visible and may settle quickly due to their larger size. They can travel short distances but are less likely to remain suspended in the air compared to aerosols.
  • Transmission of Pathogens: Droplets can carry pathogens, particularly during procedures that generate saliva or blood.

Clinical Implications

  • Infection Control: Droplets can pose a risk for respiratory infections, especially in procedures involving patients with known infections. Proper PPE, including masks and face shields, is essential to minimize exposure.

5. Dust Particles

Dust particles are tiny solid particles that can be generated from various sources, including the wear of dental materials, the use of rotary instruments, and the handling of dental products.

Characteristics

  • Size: Dust particles can vary in size but are generally smaller than 10 micrometers in diameter.
  • Sources: They can originate from dental materials, such as composite resins, ceramics, and metals, as well as from the environment.

Clinical Implications

  • Respiratory Risks: Inhalation of dust particles can pose respiratory risks to dental personnel. Effective ventilation and the use of masks can help reduce exposure.
  • Allergic Reactions: Some individuals may have allergic reactions to specific dust particles, particularly those derived from dental materials.

6. Bioaerosols

Bioaerosols are airborne particles that contain living organisms or biological materials, including bacteria, viruses, fungi, and allergens.

Characteristics

  • Composition: Bioaerosols can include a mixture of aerosols, droplets, and dust particles that carry viable microorganisms.
  • Sources: They can be generated during dental procedures, particularly those that involve the manipulation of saliva, blood, or infected tissues.

Clinical Implications

  • Infection Control: Bioaerosols pose a significant risk for the transmission of infectious diseases. Implementing strict infection control protocols, including the use of high-efficiency particulate air (HEPA) filters and proper PPE, is crucial.
  • Monitoring Air Quality: Regular monitoring of air quality in the dental operatory can help assess the presence of bioaerosols and inform infection control practices.

7. Particulate Matter (PM)

Particulate matter (PM) refers to a mixture of solid particles and liquid droplets suspended in the air. In the dental context, it can include a variety of particles generated during procedures.

Characteristics

  • Size Categories: PM is often categorized by size, including PM10 (particles with a diameter of 10 micrometers or less) and PM2.5 (particles with a diameter of 2.5 micrometers or less).
  • Sources: In a dental setting, PM can originate from dental materials, equipment wear, and environmental sources.

Clinical Implications

  • Health Risks: Exposure to particulate matter can have adverse health effects, particularly for individuals with respiratory conditions. Proper ventilation and air filtration systems can help mitigate these risks.
  • Regulatory Standards: Dental practices may need to adhere to local regulations regarding air quality and particulate matter levels.

Explore by Exams