Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Conservative Dentistry

Cutting Edge Mechanics

Edge Angles and Their Importance

  • Edge Angle: The angle formed at the cutting edge of a bur blade. Increasing the edge angle reinforces the cutting edge, which helps to reduce the likelihood of blade fracture during use.
  • Reinforcement: A larger edge angle provides more material at the cutting edge, enhancing its strength and durability.

Carbide vs. Steel Burs

  • Carbide Burs:
    • Hardness and Wear Resistance: Carbide burs are known for their higher hardness and wear resistance compared to steel burs. This makes them suitable for cutting through hard dental tissues.
    • Brittleness: However, carbide burs are more brittle than steel burs, which means they are more prone to fracture if not designed properly.
    • Edge Angles: To minimize the risk of fractures, carbide burs require greater edge angles. This design consideration is crucial for maintaining the integrity of the bur during clinical procedures.

Interdependence of Angles

  • Three Angles: The cutting edge of a bur is defined by three angles: the edge angle, the clearance angle, and the rake angle. These angles cannot be varied independently of each other.
    • Clearance Angle: An increase in the clearance angle (the angle between the cutting edge and the surface being cut) results in a decrease in the edge angle. This relationship is important for optimizing cutting efficiency and minimizing wear on the bur.

Dental mercury hygiene is crucial in minimizing occupational exposure to mercury vapor and amalgam particles during the placement, removal, and handling of dental amalgam. The following recommendations are based on the best practices and guidelines established by various dental and environmental health organizations:

- Use of amalgam separators: Dental offices should install and maintain amalgam separators to capture at least 95% of amalgam particles before they enter the wastewater system. This reduces the release of mercury into the environment.
- Vacuum line maintenance: Regularly replace the vacuum line trap to avoid mercury accumulation and ensure efficient evacuation of mercury vapor during amalgam removal.
- Adequate ventilation: Maintain proper air exchange in the operatory and use a high-volume evacuation (HVE) system to reduce mercury vapor levels during amalgam placement and removal.
- Personal protective equipment (PPE): Dentists, hygienists, and assistants should wear PPE, such as masks, gloves, and protective eyewear to minimize skin and respiratory exposure to mercury vapor and particles.
- Mercury spill management: Have a written spill protocol and necessary clean-up materials readily available. Use a HEPA vacuum to clean up spills and dispose of contaminated materials properly.
- Safe storage: Store elemental mercury in tightly sealed, non-breakable containers in a dedicated area with controlled access.
- Proper disposal: Follow local, state, and federal regulations for the disposal of dental amalgam waste, including used capsules, amalgam separators, and chairside traps.
- Continuous monitoring: Implement regular monitoring of mercury vapor levels in the operatory and staff exposure levels to ensure compliance with occupational safety guidelines.
- Staff training: Provide regular training on the handling of dental amalgam and mercury hygiene to all dental personnel.
- Patient communication: Inform patients about the use of dental amalgam and the safety measures in place to minimize their exposure to mercury.
- Alternative restorative materials: Consider using alternative restorative materials, such as composite resins or glass ionomers, where appropriate.

Dental Burs

Dental burs are essential tools used in restorative dentistry for cutting, shaping, and finishing tooth structure. The design and characteristics of burs significantly influence their cutting efficiency, vibration, and overall performance. Below is a detailed overview of the key features and considerations related to dental burs.

1. Structure of Burs

A. Blades and Flutes

  • Blades: The cutting edges on a bur are uniformly spaced, and the number of blades is always even.
  • Flutes: The spaces between the blades are referred to as flutes. These flutes help in the removal of debris during cutting.

B. Cutting Action

  • Number of Blades:
    • Excavating Burs: Typically have 6-10 blades. These burs are designed for efficient removal of tooth structure.
    • Finishing Burs: Have 12-40 blades, providing a smoother finish to the tooth surface.
  • Cutting Efficiency:
    • A greater number of blades results in a smoother cutting action at low speeds.
    • However, as the number of blades increases, the space between subsequent blades decreases, which can reduce the overall cutting efficiency.

2. Vibration and RPM

A. Vibration

  • Cycles per Second: Vibrations over 1,300 cycles/second are generally imperceptible to patients.
  • Effect of Blade Number: Fewer blades on a bur tend to produce greater vibrations during use.
  • RPM Impact: Higher RPM (revolutions per minute) results in less amplitude and greater frequency of vibration, contributing to a smoother cutting experience.

3. Rake Angle

A. Definition

  • Rake Angle: The angle that the face of the blade makes with a radial line drawn from the center of the bur to the blade.

B. Cutting Efficiency

  • Positive Rake Angle: Generally preferred for cutting efficiency.
  • Radial Rake Angle: Intermediate efficiency.
  • Negative Rake Angle: Less efficient for cutting.
  • Clogging: Burs with a positive rake angle may experience clogging due to debris accumulation.

4. Clearance Angle

A. Definition

  • Clearance Angle: This angle provides necessary clearance between the working edge and the cutting edge of the bur, allowing for effective cutting without binding.

5. Run-Out

A. Definition

  • Run-Out: Refers to the eccentricity or maximum displacement of the bur head from its axis of rotation.
  • Acceptable Value: The average clinically acceptable run-out is about 0.023 mm. Excessive run-out can lead to uneven cutting and discomfort for the patient.

6. Load Applied by Dentist

A. Load Ranges

  • Low Speed: The load applied by the dentist typically ranges from 100 to 1500 grams.
  • High Speed: The load is generally lower, ranging from 60 to 120 grams.

7. Diamond Stones

A. Characteristics

  • Hardness: Diamond stones are the hardest and most efficient abrasive tools available for removing tooth enamel.
  • Application: They are commonly used for cutting and finishing procedures due to their superior cutting ability and durability.

Composition of Glass Ionomer Cement (GIC) Powder

Glass Ionomer Cement (GIC) is a widely used dental material known for its adhesive properties, biocompatibility, and fluoride release. The powder component of GIC plays a crucial role in its setting reaction and overall performance. Below is an overview of the typical composition of GIC powder.

1. Basic Components of GIC Powder

A. Glass Powder

  • Fluorosilicate Glass: The primary component of GIC powder is a specially formulated glass, often referred to as fluorosilicate glass. This glass is composed of:
    • Silica (SiO₂): Provides the structural framework of the glass.
    • Alumina (Al₂O₃): Enhances the strength and stability of the glass.
    • Calcium Fluoride (CaF₂): Contributes to the fluoride release properties of the cement, which is beneficial for caries prevention.
    • Sodium Fluoride (NaF): Sometimes included to further enhance fluoride release.
    • Barium or Strontium Oxide: May be added to improve radiopacity, allowing for better visibility on radiographs.

B. Other Additives

  • Modifiers: Various modifiers may be added to the glass powder to enhance specific properties, such as:
    • Zinc Oxide (ZnO): Can be included to improve the mechanical properties and setting characteristics.
    • Titanium Dioxide (TiO₂): Sometimes added to enhance the aesthetic properties and opacity of the cement.

2. Properties of GIC Powder

A. Reactivity

  • The glass powder reacts with the acidic liquid component (usually polyacrylic acid) to form a gel-like matrix that hardens over time. This reaction is crucial for the setting and bonding of the cement to tooth structure.

B. Fluoride Release

  • One of the key benefits of GIC is its ability to release fluoride ions over time, which can help in the prevention of secondary caries and promote remineralization of the tooth structure.

C. Biocompatibility

  • GIC powders are designed to be biocompatible, making them suitable for use in various dental applications, including restorations, liners, and bases.

 

Glass Ionomer Cement (GIC) Powder-Liquid Composition

Glass Ionomer Cement (GIC) is a widely used dental material known for its adhesive properties, biocompatibility, and fluoride release. The composition of GIC involves a powder-liquid system, where the liquid component plays a crucial role in the setting and performance of the cement. Below is an overview of the composition of GIC liquid, its components, and their functions.

1. Composition of GIC Liquid

A. Basic Components

The liquid component of GIC is primarily an aqueous solution containing various polymers and copolymers. The typical composition includes:

  • Polyacrylic Acid (40-50%):

    • This is the primary component of the liquid, providing the acidic environment necessary for the reaction with the glass powder.
    • It may also include Itaconic Acid and Maleic Acid, which enhance the properties of the cement.
  • Tartaric Acid (6-15%):

    • Tartaric acid is added to improve the handling characteristics of the cement and increase the working time.
    • It also shortens the setting time, making it essential for clinical applications.
  • Water (30%):

    • Water serves as the solvent for the other components, facilitating the mixing and reaction process.

B. Modifications to Improve Performance

To enhance the performance of the GIC liquid, several modifications are made:

  1. Addition of Itaconic and Tricarboxylic Acids:

    • Decrease Viscosity: These acids help lower the viscosity of the liquid, making it easier to handle and mix.
    • Promote Reactivity: They enhance the reactivity between the glass powder and the liquid, leading to a more effective setting reaction.
    • Prevent Gelation: By reducing hydrogen bonding between polyacrylic acid chains, these acids help prevent gelation of the liquid over time.
  2. Polymaleic Acid:

    • Often included in the liquid, polymaleic acid is a stronger acid than polyacrylic acid.
    • It accelerates the hardening process and reduces moisture sensitivity due to its higher number of carboxyl (COOH) groups, which promote rapid polycarboxylate crosslinking.
    • This allows for the use of more conventional, less reactive glasses, resulting in a more aesthetic final set cement.

2. Functions of Liquid Components

A. Polyacrylic Acid

  • Role: Acts as the primary acid that reacts with the glass powder to form the cement matrix.
  • Properties: Provides adhesion to tooth structure and contributes to the overall strength of the set cement.

B. Tartaric Acid

  • Role: Enhances the working characteristics of the cement, allowing for better manipulation during application.
  • Impact on Setting: While it increases working time, it also shortens the setting time, requiring careful management during clinical use.

C. Water

  • Role: Essential for dissolving the acids and facilitating the chemical reaction between the liquid and the glass powder.
  • Impact on Viscosity: The water content helps maintain the appropriate viscosity for mixing and application.

3. Stability and Shelf Life

  • Viscosity Changes: The viscosity of tartaric acid-containing cement generally remains stable over its shelf life. However, if the cement is past its expiration date, viscosity changes may occur, affecting its handling and performance.
  • Storage Conditions: Proper storage conditions are essential to maintain the integrity of the liquid and prevent degradation.

Effects of Acid Etching on Enamel

Acid etching is a critical step in various dental procedures, particularly in the bonding of restorative materials to tooth structure. This process modifies the enamel surface to enhance adhesion and improve the effectiveness of dental materials. Below are the key effects of acid etching on enamel:

1. Removal of Pellicle

  • Pellicle Removal: Acid etching effectively removes the acquired pellicle, a thin film of proteins and glycoproteins that forms on the enamel surface after tooth cleaning.
  • Exposure of Inorganic Crystalline Component: By removing the pellicle, the underlying inorganic crystalline structure of the enamel is exposed, allowing for better interaction with bonding agents.

2. Creation of a Porous Layer

  • Porous Layer Formation: Acid etching creates a porous layer on the enamel surface.
  • Depth of Pores: The depth of these pores typically ranges from 5 to 10 micrometers (µm), depending on the concentration and duration of the acid application.
  • Increased Surface Area: The formation of these pores increases the surface area available for bonding, enhancing the mechanical retention of restorative materials.

3. Increased Wettability

  • Wettability Improvement: Acid etching increases the wettability of the enamel surface.
  • Significance: Improved wettability allows bonding agents to spread more easily over the etched surface, facilitating better adhesion and reducing the risk of voids or gaps.

4. Increased Surface Energy

  • Surface Energy Elevation: The etching process raises the surface energy of the enamel.
  • Impact on Bonding: Higher surface energy enhances the ability of bonding agents to adhere to the enamel, promoting a stronger bond between the tooth structure and the restorative material.

Rotational Speeds of Dental Instruments

1. Measurement of Rotational Speed

Revolutions Per Minute (RPM)

  • Definition: The rotational speed of dental instruments is measured in revolutions per minute (rpm), indicating how many complete rotations the instrument makes in one minute.
  • Importance: Understanding the rpm is essential for selecting the appropriate instrument for specific dental procedures, as different speeds are suited for different tasks.


2. Speed Ranges of Dental Instruments

A. Low-Speed Instruments

  • Speed Range: Below 12,000 rpm.
  • Applications:
    • Finishing and Polishing: Low-speed handpieces are commonly used for finishing and polishing restorations, as they provide greater control and reduce the risk of overheating the tooth structure.
    • Cavity Preparation: They can also be used for initial cavity preparation, especially in areas where precision is required.
  • Instruments: Low-speed handpieces, contra-angle attachments, and slow-speed burs.

B. Medium-Speed Instruments

  • Speed Range: 12,000 to 200,000 rpm.
  • Applications:
    • Cavity Preparation: Medium-speed handpieces are often used for more aggressive cavity preparation and tooth reduction, providing a balance between speed and control.
    • Crown Preparation: They are suitable for preparing teeth for crowns and other restorations.
  • Instruments: Medium-speed handpieces and specific burs designed for this speed range.

C. High-Speed Instruments

  • Speed Range: Above 200,000 rpm.
  • Applications:
    • Rapid Cutting: High-speed handpieces are primarily used for cutting hard dental tissues, such as enamel and dentin, due to their ability to remove material quickly and efficiently.
    • Cavity Preparation: They are commonly used for cavity preparations, crown preparations, and other procedures requiring rapid tooth reduction.
  • Instruments: High-speed handpieces and diamond burs, which are designed to withstand the high speeds and provide effective cutting.


3. Clinical Implications

A. Efficiency and Effectiveness

  • Material Removal: Higher speeds allow for faster material removal, which can reduce chair time for patients and improve workflow in the dental office.
  • Precision: Lower speeds provide greater control, which is essential for delicate procedures and finishing work.

B. Heat Generation

  • Risk of Overheating: High-speed instruments can generate significant heat, which may lead to pulpal damage if not managed properly. Adequate cooling with water spray is essential during high-speed procedures to prevent overheating of the tooth.

C. Instrument Selection

  • Choosing the Right Speed: Dentists must select the appropriate speed based on the procedure being performed, the type of material being cut, and the desired outcome. Understanding the characteristics of each speed range helps in making informed decisions.

Composite Materials- Mechanical Properties and Clinical Considerations

Introduction

Composite materials are essential in modern dentistry, particularly for restorative procedures. Their mechanical properties, aesthetic qualities, and bonding capabilities make them a preferred choice for various applications. This lecture will focus on the importance of the bond between the organic resin matrix and inorganic filler, the evolution of composite materials, and key clinical considerations in their application.

1. Bonding in Composite Materials

Importance of Bonding

For a composite to exhibit good mechanical properties, a strong bond must exist between the organic resin matrix and the inorganic filler. This bond is crucial for:

  • Strength: Enhancing the overall strength of the composite.
  • Durability: Reducing solubility and water absorption, which can compromise the material over time.

Role of Silane Coupling Agents

  • Silane Coupling Agents: These agents are used to coat filler particles, facilitating a chemical bond between the filler and the resin matrix. This interaction significantly improves the mechanical properties of the composite.

2. Evolution of Composite Materials

Microfill Composites

  • Introduction: In the late 1970s, microfill composites, also known as "polishable" composites, were introduced.
  • Characteristics: These materials replaced the rough surface of conventional composites with a smooth, lustrous surface similar to tooth enamel.
  • Composition: Microfill composites contain colloidal silica particles instead of larger filler particles, allowing for better polishability and aesthetic outcomes.

Hybrid Composites

  • Structure: Hybrid composites contain a combination of larger filler particles and sub-micronsized microfiller particles.
  • Surface Texture: This combination provides a smooth "patina-like" surface texture in the finished restoration, enhancing both aesthetics and mechanical properties.

3. Clinical Considerations

Polymerization Shrinkage and Configuration Factor (C-factor)

  • C-factor: The configuration factor is the ratio of bonded surfaces to unbonded surfaces in a tooth preparation. A higher C-factor can lead to increased polymerization shrinkage, which may compromise the restoration.
  • Clinical Implications: Understanding the C-factor is essential for minimizing shrinkage effects, particularly in Class II restorations.

Incremental Placement of Composite

  • Incremental Technique: For Class II restorations, it is crucial to place and cure the composite incrementally. This approach helps reduce the effects of polymerization shrinkage, especially along the gingival floor.
  • Initial Increment: The first small increment should be placed along the gingival floor and extend slightly up the facial and lingual walls to ensure proper adaptation and minimize stress.

4. Curing Techniques

Light-Curing Systems

  • Common Systems: The most common light-curing systems include quartz/tungsten/halogen lamps. However, alternatives such as plasma arc curing (PAC) and argon laser curing systems are available.
  • Advantages of PAC and Laser Systems: These systems provide high-intensity and rapid polymerization compared to traditional halogen systems, which can be beneficial in clinical settings.

Enamel Beveling

  • Beveling Technique: The advantage of an enamel bevel in composite tooth preparation is that it exposes the ends of the enamel rods, allowing for more effective etching compared to only exposing the sides.
  • Clinical Application: Proper beveling can enhance the bond strength and overall success of the restoration.

5. Managing Microfractures and Marginal Integrity

Causes of Microfractures

Microfractures in marginal enamel can result from:

  • Traumatic contouring or finishing techniques.
  • Inadequate etching and bonding.
  • High-intensity light-curing, leading to excessive polymerization stresses.

Potential Solutions

To address microfractures, clinicians can consider:

  • Re-etching, priming, and bonding the affected area.
  • Conservatively removing the fault and re-restoring.
  • Using atraumatic finishing techniques, such as light intermittent pressure.
  • Employing slow-start polymerization techniques to reduce stress.

Explore by Exams