NEET MDS Lessons
Conservative Dentistry
Cutting Edge Mechanics
Edge Angles and Their Importance
- Edge Angle: The angle formed at the cutting edge of a bur blade. Increasing the edge angle reinforces the cutting edge, which helps to reduce the likelihood of blade fracture during use.
- Reinforcement: A larger edge angle provides more material at the cutting edge, enhancing its strength and durability.
Carbide vs. Steel Burs
- Carbide Burs:
- Hardness and Wear Resistance: Carbide burs are known for their higher hardness and wear resistance compared to steel burs. This makes them suitable for cutting through hard dental tissues.
- Brittleness: However, carbide burs are more brittle than steel burs, which means they are more prone to fracture if not designed properly.
- Edge Angles: To minimize the risk of fractures, carbide burs require greater edge angles. This design consideration is crucial for maintaining the integrity of the bur during clinical procedures.
Interdependence of Angles
- Three Angles: The cutting edge of a bur is defined by
three angles: the edge angle, the clearance angle, and the rake angle. These
angles cannot be varied independently of each other.
- Clearance Angle: An increase in the clearance angle (the angle between the cutting edge and the surface being cut) results in a decrease in the edge angle. This relationship is important for optimizing cutting efficiency and minimizing wear on the bur.
Radiographic Advancements in Caries Detection
Advancements in dental technology have significantly improved the detection and quantification of dental caries. This lecture will cover several key technologies used in caries detection, including Diagnodent, infrared and red fluorescence, DIFOTI, and QLF, as well as the film speeds used in radiographic imaging.
1. Diagnodent
-
Technology:
- Utilizes infrared laser fluorescence for the detection and quantification of dental caries, particularly effective for occlusal and smooth surface caries.
- Not as effective for detecting proximal caries.
-
Specifications:
- Operates using red light with a wavelength of 655 nm.
- Features a fiber optic cable with a handheld probe and a diode laser light source.
- The device transmits light to the handheld probe and fiber optic tip.
-
Measurement:
- Scores dental caries on a scale of 0-99.
- Fluorescence is attributed to the presence of porphyrin, a compound produced by bacteria in carious lesions.
-
Scoring Criteria:
- Score 1: <15 - No dental caries; up to half of enamel intact.
- Score 2: 15-19 - Demineralization extends into the inner half of enamel or upper third of dentin.
- Score 3: >19 - Extending into the inner portion of dentin.
2. Infrared and Red Fluorescence
- Also Known As: Midwest Caries I.D. detection handpiece.
- Technology:
- Utilizes two wavelengths:
- 880 nm - Infrared
- 660 nm - Red
- Utilizes two wavelengths:
- Application:
- Designed for use over all tooth surfaces.
- Particularly useful for detecting hidden occlusal caries.
3. DIFOTI (Digital Imaging Fiber Optic Transillumination)
- Description:
- An advancement of the Fiber Optic Transillumination (FOTI) technique.
- Application:
- Primarily used for the detection of proximal caries.
- Drawback:
- Difficulty in accurately determining the depth of the lesion.
4. QLF (Quantitative Laser Fluorescence)
- Overview:
- One of the most extensively investigated techniques for early detection of dental caries, introduced in 1978.
- Effectiveness:
- Good for detecting occlusal and smooth surface caries.
- Challenging for detecting interproximal caries.
Film Speed in Radiographic Imaging
- Film Types:
- Film D: Best film for detecting incipient caries.
- Film E: Most commonly used film in dentistry for caries detection.
- Film F: Most recommended film speed for general use.
- Film C: No longer available.
Composite Cavity Preparation
Composite cavity preparations are designed to optimize the placement and retention of composite resin materials in restorative dentistry. There are three basic designs for composite cavity preparations: Conventional, Beveled Conventional, and Modified. Each design has specific characteristics and indications based on the clinical situation.
1. Conventional Preparation Design
A. Characteristics
- Design: Similar to cavity preparations for amalgam restorations.
- Shape: Box-like cavity with slight occlusal convergence, flat floors, and undercuts in dentin.
- Cavosurface Angle: Near 90° (butt joint), which provides a strong interface for the restoration.
B. Indications
- Moderate to Large Class I and Class II Restorations: Suitable for larger cavities where significant tooth structure is missing.
- Replacement of Existing Amalgam: When an existing amalgam restoration needs to be replaced, a conventional preparation is often indicated.
- Class II Cavities Extending onto the Root: In cases where the cavity extends onto the root, a conventional design is preferred to ensure adequate retention and support.
2. Beveled Conventional Preparation
A. Characteristics
- Enamel Cavosurface Bevel: Incorporation of a bevel at the enamel margin to increase surface area for bonding.
- End-on-Etching: The bevel allows for more effective etching of the enamel rods, enhancing adhesion.
- Benefits:
- Improves retention of the composite material.
- Reduces microleakage at the restoration interface.
- Strengthens the remaining tooth structure.
B. Preparation Technique
- Bevel Preparation: The bevel is created using a flame-shaped diamond instrument, approximately 0.5 mm wide and angled at 45° to the external enamel surface.
C. Indications
- Large Area Restorations: Ideal for restoring larger areas of tooth structure.
- Replacing Existing Restorations: Suitable for class III, IV, and VI cavities where composite is used to replace older restorations.
- Rarely Used for Posterior Restorations: While effective, this design is less commonly used for posterior teeth due to aesthetic considerations.
3. Modified Preparation
A. Characteristics
- Depth of Preparation: Does not routinely extend into dentin; the depth is determined by the extent of the carious lesion.
- Wall Configuration: No specified wall configuration, allowing for flexibility in design.
- Conservation of Tooth Structure: Aims to conserve as much tooth structure as possible while obtaining retention through micro-mechanical means (acid etching).
- Appearance: Often has a scooped-out appearance, reflecting its conservative nature.
B. Indications
- Small Cavitated Carious Lesions: Best suited for small carious lesions that are surrounded by enamel.
- Correcting Enamel Defects: Effective for addressing minor enamel defects without extensive preparation.
C. Modified Preparation Designs
- Class III (A and B): For anterior teeth, focusing on small defects or carious lesions.
- Class IV (C and D): For anterior teeth with larger defects, ensuring minimal loss of healthy tooth structure.
Pit and Fissure Sealants
Pit and fissure sealants are preventive dental materials applied to the occlusal surfaces of teeth to prevent caries in the pits and fissures. These sealants work by filling in the grooves and depressions on the tooth surface, thereby eliminating the sheltered environment where bacteria can thrive and cause decay.
Classification
Mitchell and Gordon (1990) classified pit and fissure sealants based on their composition and properties. While the specific classification details are not provided in the prompt, sealants can generally be categorized into:
- Resin-Based Sealants: These are the most common type, made from composite resins that provide good adhesion and durability.
- Glass Ionomer Sealants: These sealants release fluoride and bond chemically to the tooth structure, providing additional protection against caries.
- Polyacid-Modified Resin Sealants: These combine properties of both resin and glass ionomer sealants, offering improved adhesion and fluoride release.
Requisites of an Efficient Sealant
For a pit and fissure sealant to be effective, it should possess the following characteristics:
- Viscosity: The sealant should be viscous enough to penetrate deep into pits and fissures.
- Adequate Working Time: Sufficient time for application and manipulation before curing.
- Low Sorption and Solubility: The material should have low water sorption and solubility to maintain its integrity in the oral environment.
- Rapid Cure: Quick curing time to allow for efficient application and patient comfort.
- Good Adhesion: Strong and prolonged adhesion to enamel to prevent microleakage.
- Wear Resistance: The sealant should withstand the forces of mastication without wearing away.
- Minimum Tissue Irritation: The material should be biocompatible and cause minimal irritation to oral tissues.
- Cariostatic Action: Ideally, the sealant should have properties that inhibit the growth of caries-causing bacteria.
Indications for Use
Pit and fissure sealants are indicated in the following situations:
- Newly Erupted Teeth: Particularly primary molars and permanent premolars and molars that have recently erupted (within the last 4 years).
- Open or Sticky Pits and Fissures: Teeth with pits and fissures that are not well coalesced and may trap food particles.
- Stained Pits and Fissures: Teeth with stained pits and fissures showing minimal decalcification.
Contraindications for Use
Pit and fissure sealants should not be used in the following situations:
- No Previous Caries Experience: Teeth that have no history of caries and have well-coalesced pits and fissures.
- Self-Cleansable Pits and Fissures: Wide pits and fissures that can be effectively cleaned by normal oral hygiene.
- Caries-Free for Over 4 Years: Teeth that have been caries-free for more than 4 years.
- Proximal Caries: Presence of caries on proximal surfaces, either clinically or radiographically.
- Partially Erupted Teeth: Teeth that cannot be adequately isolated during the sealing process.
Key Points for Sealant Application
Age Range for Sealant Application
- 3-4 Years of Age: Application is recommended for newly erupted primary molars.
- 6-7 Years of Age: First permanent molars typically erupt during this age, making them prime candidates for sealant application.
- 11-13 Years of Age: Second permanent molars and premolars should be considered for sealants as they erupt.
Mercury Exposure and Safety
Concentrations of Mercury in Air
- Typical Levels: Mercury concentrations in air can vary
significantly:
- Pure air: 0.002 µg/m³
- Urban air: 0.05 µg/m³
- Air near industrial parks: 3 µg/m³
- Air in mercury mines: 300 µg/m³
- Threshold Limit Value (TLV): The generally accepted TLV for exposure to mercury vapor for a 40-hour work week is 50 µg/m³. Understanding these levels is crucial for ensuring safety in dental practices where amalgam is used.
Beveled Conventional Preparation
Characteristics
- External Walls: In a beveled conventional preparation, the external walls are perpendicular to the enamel surface.
- Beveled Margin: The enamel margin is beveled, which helps to create a smooth transition between the restoration and the tooth structure.
Benefits
- Improved Aesthetics: The beveling technique enhances the aesthetics of the restoration by minimizing the visibility of the margin.
- Strength and Bonding: Beveling can improve the bonding surface area and reduce the risk of marginal leakage, which is critical for the longevity of the restoration.
Concepts in Dental Cavity Preparation and Restoration
In operative dentistry, understanding the anatomy of tooth preparations and the techniques used for effective restorations is crucial. The importance of wall convergence in Class I amalgam restorations, the use of dental floss with retainers, and specific considerations for preparing mandibular first premolars.
1. Pulpal Wall and Axial Wall
Pulpal Wall
- Definition: The pulpal wall is an external wall of a cavity preparation that is perpendicular to both the long axis of the tooth and the occlusal surface of the pulp. It serves as a boundary for the pulp chamber.
- Function: This wall is critical in protecting the pulp from external irritants and ensuring the integrity of the tooth structure during restorative procedures.
Axial Wall
- Transition: Once the pulp has been removed, the pulpal wall becomes the axial wall.
- Definition: The axial wall is an internal wall that is parallel to the long axis of the tooth. It plays a significant role in the retention and stability of the restoration.
2. Wall Convergence in Class I Amalgam Restorations
Facial and Lingual Walls
- Convergence: In Class I amalgam restorations, the facial and lingual walls should always be made slightly occlusally convergent.
- Importance:
- Retention: Slight convergence helps in retaining the amalgam restoration by providing a mechanical interlock.
- Prevention of Dislodgement: This design minimizes the risk of dislodgement of the restoration during functional loading.
Clinical Implications
- Preparation Technique: When preparing a Class I cavity, clinicians should ensure that the facial and lingual walls are slightly angled towards the occlusal surface, promoting effective retention of the amalgam.
3. Use of Dental Floss with Retainers
Retainer Safety
- Bow of the Retainer: The bow of the retainer should be tied with approximately 12 inches of dental floss.
- Purpose:
- Retrieval: The floss allows for easy retrieval of the retainer or any broken parts if they are accidentally swallowed or aspirated by the patient.
- Patient Safety: This precaution enhances patient safety during dental procedures, particularly when using matrix retainers for restorations.
Clinical Practice
- Implementation: Dental professionals should routinely tie dental floss to retainers as a standard safety measure, ensuring that it is easily accessible in case of an emergency.
4. Pulpal Wall Considerations in Mandibular First Premolars
Anatomy of the Mandibular First Premolar
- Pulpal Wall Orientation: The pulpal wall of the mandibular first premolar declines lingually. This anatomical feature is important to consider during cavity preparation.
- Pulp Horn Location:
- The facial pulp horn is prominent and located at a higher level than the lingual pulp horn. This asymmetry necessitates careful attention during preparation to avoid pulp exposure.
Bur Positioning
- Tilting the Bur: When preparing the cavity, the bur should be tilted lingually to prevent exposure of the facial pulp horn.
- Technique: This technique helps ensure that the preparation is adequately shaped while protecting the pulp from inadvertent injury.