Talk to us?

Conservative Dentistry - NEETMDS- courses
NEET MDS Lessons
Conservative Dentistry

Condensers/pluggers are instruments used to deliver the forces of compaction to the underlying restorative material. There are

several methods for the application of these forces:

1. Hand pressure: use of this method alone is contraindicated except in a few situations like adapting the first piece of gold to

the convenience or point angles and where the line of force will not permit use of other methods. Powdered golds are also

known to be better condensed with hand pressure. Small condenser points of 0.5 mm in diameter are generally

recommended as they do not require very high forces for their manipulation.

2. Hand malleting: Condensation by hand malleting is a team work in which the operator directs the condenser and moves it

over the surface, while the assistant provides rhythmic blows from the mallet. Long handled condensers and leather faced

mallets (50 gms in weight) are used for this purpose. The technique allows greater control and the condensers can be

changed rapidly when required. However, with the introduction of mechanical malleting, use of this method has decreased

considerably.

3. Automatic hand malleting: This method utilizes a spring loaded instrument that delivers the desired force once the spiral

spring is released. (Disadvantage is that the blow descends very rapidly even before full pressure has been exerted on the

condenser point.

4. Electric malleting (McShirley electromallet): This instrument accommodates various shapes of con-denser points and has a

mallet in the handle itself which remains dormant until wished by the operator to function. The intensity or amplitude

generated can vary from 0.2 ounces to 15 pounds and the frequency can range from 360-3600 cycles/minute.

5. Pneumatic malleting (Hollenback condenser): This is the most recent and satisfactory method first developed by

Dr. George M. Hollenback. Pneumatic mallets consist of vibrating nit condensers and detachable tips run by

compressed air. The air is carried through a thin rubber tubing attached to the hand piece. Controlling the air

pressure by a rheostat nit allows adjusting the frequency and amplitude of condensation strokes. The construction

of the handpiece is such that the blow does not fall until pressure is placed on the condenser point. This continues

until released. Pneumatic mallets are available with both straight and angled for handpieces.

Pouring the Final Impression

Technique

  • Mixing Die Stone: A high-strength die stone is mixed using a vacuum mechanical mixer to ensure a homogenous mixture without air bubbles.
  • Pouring Process:
    • The die stone is poured into the impression using a vibrator and a No. 7 spatula.
    • The first increments should be applied in small amounts, allowing the material to flow into the remote corners and angles of the preparation without trapping air.
  • Surface Tension-Reducing Agents: These agents can be added to the die stone to enhance its flow properties, allowing it to penetrate deep into the internal corners of the impression.

Final Dimensions

  • The impression should be filled sufficiently so that the dies will be approximately 15 to 20 mm tall occluso-gingivally after trimming. This height is important for the stability and accuracy of the final restoration.

Carisolv

Carisolv is a dental caries removal system that offers a unique approach to the treatment of carious dentin. It differs from traditional methods, such as Caridex, by utilizing amino acids and a lower concentration of sodium hypochlorite. Below is an overview of its components, mechanism of action, application process, and advantages.

1. Components of Carisolv

A. Red Gel (Solution A)

  • Composition:
    • Amino Acids: Contains 0.1 M of three amino acids:
      • I-Glutamic Acid
      • I-Leucine
      • I-Lysine
    • Sodium Hydroxide (NaOH): Used to adjust pH.
    • Sodium Hypochlorite (NaOCl): Present at a lower concentration compared to Caridex.
    • Erythrosine: A dye that provides color to the gel, aiding in visualization during application.
    • Purified Water: Used as a solvent.

B. Clear Liquid (Solution B)

  • Composition:
    • Sodium Hypochlorite (NaOCl): Contains 0.5% NaOCl w/v, which contributes to the antimicrobial properties of the solution.

C. Storage and Preparation

  • Temperature: The two separate gels are stored at 48°C before use and are allowed to return to room temperature prior to application.

2. Mechanism of Action

  • Softening Carious Dentin: Carisolv is designed to soften carious dentin by chemically disrupting denatured collagen within the affected tissue.
  • Collagen Disruption: The amino acids in the formulation play a crucial role in breaking down the collagen matrix, making it easier to remove the softened carious dentin.
  • Scraping Away: After the dentin is softened, it is removed using specially designed hand instruments, allowing for precise and effective caries removal.

3. pH and Application Time

  • Resultant pH: The pH of Carisolv is approximately 11, which is alkaline and conducive to the softening process.
  • Application Time: The recommended application time for Carisolv is between 30 to 60 seconds, allowing for quick treatment of carious lesions.

4. Advantages

  • Minimally Invasive: Carisolv offers a minimally invasive approach to caries removal, preserving healthy tooth structure while effectively treating carious dentin.
  • Reduced Need for Rotary Instruments: The chemical action of Carisolv reduces the reliance on traditional rotary instruments, which can be beneficial for patients with anxiety or those requiring a gentler approach.
  • Visualization: The presence of erythrosine allows for better visualization of the treated area, helping clinicians ensure complete removal of carious tissue.

Sterilization in Dental Practice

Sterilization is a critical process in dental practice, ensuring that all forms of life, including the most resistant bacterial spores, are eliminated from instruments that come into contact with mucosa or penetrate oral tissues. This guide outlines the accepted methods of sterilization, their requirements, and the importance of biological monitoring to ensure effectiveness.

Sterilization: The process of killing all forms of life, including bacterial spores, to ensure that instruments are free from any viable microorganisms. This is essential for preventing infections and maintaining patient safety.

Accepted Methods of Sterilization

There are four primary methods of sterilization commonly used in dental practices:

A. Steam Pressure Sterilization (Autoclave)

  • Description: Utilizes steam under pressure to achieve high temperatures that kill microorganisms.
  • Requirements:
    • Temperature: Typically operates at 121-134°C (250-273°F).
    • Time: Sterilization cycles usually last from 15 to 30 minutes, depending on the load.
    • Packaging: Instruments must be properly packaged to allow steam penetration.

B. Chemical Vapor Pressure Sterilization (Chemiclave)

  • Description: Involves the use of chemical vapors (such as formaldehyde) under pressure to sterilize instruments.
  • Requirements:
    • Temperature: Operates at approximately 132°C (270°F).
    • Time: Sterilization cycles typically last about 20 minutes.
    • Packaging: Instruments should be packaged to allow vapor penetration.

C. Dry Heat Sterilization (Dryclave)

  • Description: Uses hot air to sterilize instruments, effectively killing microorganisms through prolonged exposure to high temperatures.
  • Requirements:
    • Temperature: Commonly operates at 160-180°C (320-356°F).
    • Time: Sterilization cycles can last from 1 to 2 hours, depending on the temperature.
    • Packaging: Instruments must be packaged to prevent contamination after sterilization.

D. Ethylene Oxide (EtO) Sterilization

  • Description: Utilizes ethylene oxide gas to sterilize heat-sensitive instruments and materials.
  • Requirements:
    • Temperature: Typically operates at low temperatures (around 37-63°C or 98.6-145°F).
    • Time: Sterilization cycles can take several hours, including aeration time.
    • Packaging: Instruments must be packaged in materials that allow gas penetration.

Considerations for Choosing Sterilization Equipment

When selecting sterilization equipment, dental practices must consider several factors:

  • Patient Load: The number of patients treated daily will influence the size and capacity of the sterilizer.
  • Turnaround Time: The time required for instrument reuse should align with the sterilization cycle time.
  • Instrument Inventory: The variety and quantity of instruments will determine the type and size of sterilizer needed.
  • Instrument Quality: The materials and construction of instruments may affect their compatibility with certain sterilization methods.

Biological Monitoring

A. Importance of Biological Monitoring

  • Biological Monitoring Strips: These strips contain spores calibrated to be killed when sterilization conditions are met. They serve as a reliable weekly monitor of sterilization effectiveness.

B. Process

  • Testing: After sterilization, the strips are sent to a licensed reference laboratory for testing.
  • Documentation: Dentists receive independent documentation of monitoring frequency and sterilization effectiveness.
  • Failure Response: In the event of a sterilization failure, laboratory personnel provide immediate expert consultation to help resolve the issue.

Wedging Techniques

Various wedging methods are employed to achieve optimal results, especially in cases involving gingival recession or wide proximal boxes. Below are descriptions of different wedging techniques, including "piggy back" wedging, double wedging, and wedge wedging.

1. Piggy Back Wedging

A. Description

  • Technique: In piggy back wedging, a second smaller wedge is placed on top of the first wedge.
  • Indication: This technique is particularly useful in patients with gingival recession, where there is a risk of overhanging restoration margins that could irritate the gingiva.

B. Purpose

  • Prevention of Gingival Overhang: The additional wedge helps to ensure that the restoration does not extend beyond the tooth surface into the gingival area, thereby preventing potential irritation and maintaining periodontal health.

2. Double Wedging

A. Description

  • Technique: In double wedging, wedges are placed from both the lingual and facial surfaces of the tooth.
  • Indication: This method is beneficial in cases where the proximal box is wide, providing better adaptation of the matrix band and ensuring a tighter seal.

B. Purpose

  • Enhanced Stability: By using wedges from both sides, the matrix band is held securely in place, reducing the risk of material leakage and improving the overall quality of the restoration.

3. Wedge Wedging

A. Description

  • Technique: In wedge wedging, a second wedge is inserted between the first wedge and the matrix band, particularly in specific anatomical situations.
  • Indication: This technique is commonly used in the maxillary first premolar, where a mesial concavity may complicate the placement of the matrix band.

B. Purpose

  • Improved Adaptation: The additional wedge helps to fill the space created by the mesial concavity, ensuring that the matrix band conforms closely to the tooth surface and providing a better seal for the restorative material.

Spray Particles in the Dental Operatory

1. Aerosols

Aerosols are composed of invisible particles that range in size from approximately 5 micrometers (µm) to 50 micrometers (µm).

Characteristics

  • Suspension: Aerosols can remain suspended in the air for extended periods, often for hours, depending on environmental conditions.
  • Transmission of Infection: Because aerosols can carry infectious agents, they pose a risk for the transmission of respiratory infections, including those caused by bacteria and viruses.

Clinical Implications

  • Infection Control: Dental professionals must implement appropriate infection control measures, such as the use of personal protective equipment (PPE) and effective ventilation systems, to minimize exposure to aerosols.

2. Mists


Mists are visible droplets that are larger than aerosols, typically estimated to be around 50 micrometers (µm) in diameter.

Characteristics

  • Visibility: Mists can be seen in a beam of light, making them distinguishable from aerosols.
  • Settling Time: Heavy mists tend to settle gradually from the air within 5 to 15 minutes after being generated.

Clinical Implications

  • Infection Risk: Mists produced by patients with respiratory infections, such as tuberculosis, can transmit pathogens. Dental personnel should be cautious and use appropriate protective measures when treating patients with known respiratory conditions.

3. Spatter


Spatter consists of larger particles, generally greater than 50 micrometers (µm), and includes visible splashes.

Characteristics

  • Trajectory: Spatter has a distinct trajectory and typically falls within 3 feet of the patient’s mouth.
  • Potential for Coating: Spatter can coat the face and outer garments of dental personnel, increasing the risk of exposure to infectious agents.

Clinical Implications

  • Infection Pathways: Spatter or splashing onto mucosal surfaces is considered a potential route of infection for dental personnel, particularly concerning blood-borne pathogens.
  • Protective Measures: The use of face shields, masks, and protective clothing is essential to minimize the risk of exposure to spatter during dental procedures.

4. Droplets


Droplets are larger than aerosols and mists, typically ranging from 5 to 100 micrometers in diameter. They are formed during procedures that involve the use of water or saliva, such as ultrasonic scaling or high-speed handpieces.

Characteristics

  • Size and Behavior: Droplets can be visible and may settle quickly due to their larger size. They can travel short distances but are less likely to remain suspended in the air compared to aerosols.
  • Transmission of Pathogens: Droplets can carry pathogens, particularly during procedures that generate saliva or blood.

Clinical Implications

  • Infection Control: Droplets can pose a risk for respiratory infections, especially in procedures involving patients with known infections. Proper PPE, including masks and face shields, is essential to minimize exposure.

5. Dust Particles

Dust particles are tiny solid particles that can be generated from various sources, including the wear of dental materials, the use of rotary instruments, and the handling of dental products.

Characteristics

  • Size: Dust particles can vary in size but are generally smaller than 10 micrometers in diameter.
  • Sources: They can originate from dental materials, such as composite resins, ceramics, and metals, as well as from the environment.

Clinical Implications

  • Respiratory Risks: Inhalation of dust particles can pose respiratory risks to dental personnel. Effective ventilation and the use of masks can help reduce exposure.
  • Allergic Reactions: Some individuals may have allergic reactions to specific dust particles, particularly those derived from dental materials.

6. Bioaerosols

Bioaerosols are airborne particles that contain living organisms or biological materials, including bacteria, viruses, fungi, and allergens.

Characteristics

  • Composition: Bioaerosols can include a mixture of aerosols, droplets, and dust particles that carry viable microorganisms.
  • Sources: They can be generated during dental procedures, particularly those that involve the manipulation of saliva, blood, or infected tissues.

Clinical Implications

  • Infection Control: Bioaerosols pose a significant risk for the transmission of infectious diseases. Implementing strict infection control protocols, including the use of high-efficiency particulate air (HEPA) filters and proper PPE, is crucial.
  • Monitoring Air Quality: Regular monitoring of air quality in the dental operatory can help assess the presence of bioaerosols and inform infection control practices.

7. Particulate Matter (PM)

Particulate matter (PM) refers to a mixture of solid particles and liquid droplets suspended in the air. In the dental context, it can include a variety of particles generated during procedures.

Characteristics

  • Size Categories: PM is often categorized by size, including PM10 (particles with a diameter of 10 micrometers or less) and PM2.5 (particles with a diameter of 2.5 micrometers or less).
  • Sources: In a dental setting, PM can originate from dental materials, equipment wear, and environmental sources.

Clinical Implications

  • Health Risks: Exposure to particulate matter can have adverse health effects, particularly for individuals with respiratory conditions. Proper ventilation and air filtration systems can help mitigate these risks.
  • Regulatory Standards: Dental practices may need to adhere to local regulations regarding air quality and particulate matter levels.

Gingival Seat in Class II Restorations

The gingival seat is a critical component of Class II restorations, particularly in ensuring proper adaptation and retention of the restorative material. This guide outlines the key considerations for the gingival seat in Class II restorations, including its extension, clearance, beveling, and wall placement.

1. Extension of the Gingival Seat

A. Apical Extension

  • Apical to Proximal Contact or Caries: The gingival seat should extend apically to the proximal contact point or the extent of caries, whichever is greater. This ensures that all carious tissue is removed and that the restoration has adequate retention.

2. Clearance from Adjacent Tooth

A. Clearance Requirement

  • Adjacent Tooth Clearance: The gingival seat should clear the adjacent tooth by approximately 0.5 mm. This clearance is essential to prevent damage to the adjacent tooth and to allow for proper adaptation of the restorative material.

3. Beveling of the Gingival Margin

A. Bevel Angles

  • Amalgam Restorations: For amalgam restorations, the gingival margin is typically beveled at an angle of 15-20 degrees. This bevel helps to improve the adaptation of the amalgam and reduce the risk of marginal failure.

  • Cast Restorations: For cast restorations, the gingival margin is beveled at a steeper angle of 30-40 degrees. This angle enhances the strength of the margin and provides better retention for the cast material.

B. Contraindications for Beveling

  • Root Surface Location: If the gingival seat is located on the root surface, beveling is contraindicated. This is to maintain the integrity of the root surface and avoid compromising the periodontal attachment.

4. Wall Placement

A. Facial and Lingual Walls

  • Extension of Walls: The facial and lingual walls of the proximal box should be extended such that they clear the adjacent tooth by 0.2-0.3 mm. This clearance helps to ensure that the restoration does not impinge on the adjacent tooth and allows for proper contouring of the restoration.

B. Embrasure Placement

  • Placement in Embrasures: The facial and lingual walls should be positioned in their respective embrasures. This placement helps to optimize the aesthetics and function of the restoration while providing adequate support.

Explore by Exams