NEET MDS Lessons
Conservative Dentistry
Inlay Preparation
Inlay preparations are a common restorative procedure in dentistry, particularly for Class II restorations.
1. Definitions
A. Inlay
- An inlay is a restoration that is fabricated using an indirect procedure. It involves one or more tooth surfaces and may cap one or more cusps but does not cover all cusps.
2. Class II Inlay (Cast Metal) Preparation Procedure
A. Burs Used
- Recommended Burs:
- No. 271: For initial cavity preparation.
- No. 169 L: For refining the cavity shape and creating the proximal box.
B. Initial Cavity Preparation
- Similar to Class II Amalgam: The initial cavity
preparation is performed similarly to that for Class II amalgam
restorations, with the following differences:
- Occlusal Entry Cut Depth: The initial occlusal entry should be approximately 1.5 mm deep.
- Cavity Margins Divergence: All cavity margins must
diverge occlusally by 2-5 degrees:
- 2 degrees: When the vertical walls of the cavity are short.
- 5 degrees: When the vertical walls are long.
- Proximal Box Margins: The proximal box margins should clear the adjacent tooth by 0.2-0.5 mm, with 0.5 ± 0.2 mm being ideal.
C. Preparation of Bevels and Flares
- Primary and Secondary Flares:
- Flares are created on the facial and lingual proximal walls, forming the walls in two planes.
- The secondary flare widens the proximal box, which initially had a
clearance of 0.5 mm from the adjacent tooth. This results in:
- Marginal Metal in Embrasure Area: Placing the marginal metal in the embrasure area allows for better self-cleansing and easier access for cleaning and polishing without excessive dentin removal.
- Marginal Metal Angle: A 40-degree angle, which is easily burnishable and strong.
- Enamel Margin Angle: A 140-degree angle, which blunts the enamel margin and increases its strength.
- Note: Secondary flares are omitted on the mesiofacial proximal walls of maxillary premolars and first molars for esthetic reasons.
D. Gingival Bevels
- Width: Gingival bevels should be 0.5-1 mm wide and blend with the secondary flare, resulting in a marginal metal angle of 30 degrees.
- Purpose:
- Removal of weak enamel.
- Creation of a burnishable 30-degree marginal metal.
- Production of a lap sliding fit at the gingival margin.
E. Occlusal Bevels
- Location: Present on the cavosurface margins of the cavity on the occlusal surface.
- Width: Approximately 1/4th the depth of the respective wall, resulting in a marginal metal angle of 40 degrees.
3. Capping Cusps
A. Indications
- Cusp Involvement: Capping cusps is indicated when more than 1/2 of a cusp is involved and is mandatory when 2/3 or more is involved.
B. Advantages
- Weak Enamel Removal: Helps in removing weak enamel.
- Cavity Margin Location: Moves the cavity margin away from occlusal areas subjected to heavy forces.
- Visualization of Caries: Aids in visualizing the extent of caries, increasing convenience during preparation.
C. Cusp Reduction
- Uniform Metal Thickness: Cusp reduction must provide for a uniform 1.5 mm metal thickness over the reduced cusps.
- Facial Cusp Reduction: For maxillary premolars and first molars, the reduction of the facial cusp should be 0.75-1 mm for esthetic reasons.
D. Reverse Bevel (Counter Bevel)
- Definition: A bevel given on the margins of the reduced cusp.
- Width: Varies to extend beyond any occlusal contact with opposing teeth, resulting in a marginal metal angle of 30 degrees.
E. Retention Considerations
- Retention Form: Cusp reduction decreases the retention form due to reduced vertical wall height. Therefore, proximal retentive grooves are usually recommended.
- Collar and Skirt Features: These features can enhance retention and resistance form.
Indirect Porcelain Veneers: Etched Feldspathic Veneers
Indirect porcelain veneers, particularly etched porcelain veneers, are a popular choice in cosmetic dentistry for enhancing the aesthetics of teeth. This lecture will focus on the characteristics, bonding mechanisms, and clinical considerations associated with etched feldspathic veneers.
- Indirect Porcelain Veneers: These are thin shells of porcelain that are custom-made in a dental laboratory and then bonded to the facial surface of the teeth. They are used to improve the appearance of teeth that are discolored, misaligned, or have surface irregularities.
Types of Porcelain Veneers
- Feldspathic Porcelain: The most frequently used type of porcelain for veneers is feldspathic porcelain. This material is known for its excellent aesthetic properties, including translucency and color matching with natural teeth.
Hydrofluoric Acid Etching
- Etching with Hydrofluoric Acid: Feldspathic porcelain veneers are typically etched with hydrofluoric acid before bonding. This process creates a roughened surface on the porcelain, which enhances the bonding area.
- Surface Characteristics: The etching process increases the surface area and creates micro-retentive features that improve the mechanical interlocking between the porcelain and the resin bonding agent.
Resin-Bonding Mediums
- High Bond Strengths: The etched porcelain can achieve high bond strengths to the etched enamel through the use of resin-bonding agents. These agents are designed to penetrate the micro-retentive surface created by the etching process.
- Bonding Process:
- Surface Preparation: The porcelain surface is etched with hydrofluoric acid, followed by thorough rinsing and drying.
- Application of Bonding Agent: A resin bonding agent is applied to the etched porcelain surface. This agent may contain components that enhance adhesion to both the porcelain and the tooth structure.
- Curing: The bonding agent is cured, either chemically or with a light-curing process, to achieve a strong bond between the porcelain veneer and the tooth.
Importance of Enamel Etching
- Etched Enamel: The enamel surface of the tooth is also typically etched with phosphoric acid to enhance the bond between the resin and the tooth structure. This dual etching process (both porcelain and enamel) is crucial for achieving optimal bond strength.
Clinical Considerations
A. Indications for Use
- Aesthetic Enhancements: Indirect porcelain veneers are indicated for patients seeking aesthetic improvements, such as correcting discoloration, closing gaps, or altering the shape of teeth.
- Minimal Tooth Preparation: They require minimal tooth preparation compared to crowns, preserving more of the natural tooth structure.
B. Contraindications
- Severe Tooth Wear: Patients with significant tooth wear or structural damage may require alternative restorative options.
- Bruxism: Patients with bruxism (teeth grinding) may not be ideal candidates for porcelain veneers due to the potential for fracture.
C. Longevity and Maintenance
- Durability: When properly bonded and maintained, porcelain veneers can last many years. Regular dental check-ups are essential to monitor the condition of the veneers and surrounding tooth structure.
- Oral Hygiene: Good oral hygiene practices are crucial to prevent caries and periodontal disease, which can compromise the longevity of the veneers.
Effects of Acid Etching on Enamel
Acid etching is a critical step in various dental procedures, particularly in the bonding of restorative materials to tooth structure. This process modifies the enamel surface to enhance adhesion and improve the effectiveness of dental materials. Below are the key effects of acid etching on enamel:
1. Removal of Pellicle
- Pellicle Removal: Acid etching effectively removes the acquired pellicle, a thin film of proteins and glycoproteins that forms on the enamel surface after tooth cleaning.
- Exposure of Inorganic Crystalline Component: By removing the pellicle, the underlying inorganic crystalline structure of the enamel is exposed, allowing for better interaction with bonding agents.
2. Creation of a Porous Layer
- Porous Layer Formation: Acid etching creates a porous layer on the enamel surface.
- Depth of Pores: The depth of these pores typically ranges from 5 to 10 micrometers (µm), depending on the concentration and duration of the acid application.
- Increased Surface Area: The formation of these pores increases the surface area available for bonding, enhancing the mechanical retention of restorative materials.
3. Increased Wettability
- Wettability Improvement: Acid etching increases the wettability of the enamel surface.
- Significance: Improved wettability allows bonding agents to spread more easily over the etched surface, facilitating better adhesion and reducing the risk of voids or gaps.
4. Increased Surface Energy
- Surface Energy Elevation: The etching process raises the surface energy of the enamel.
- Impact on Bonding: Higher surface energy enhances the ability of bonding agents to adhere to the enamel, promoting a stronger bond between the tooth structure and the restorative material.
Diagnostic Methods for Early Caries Detection
Early detection of caries is essential for effective management and treatment. Various diagnostic methods can be employed to identify caries activity at early stages:
1. Identification of Subsurface Demineralization
- Inspection: Visual examination of the tooth surface for signs of demineralization, such as white spots or discoloration.
- Radiographic Methods: X-rays can reveal subsurface carious lesions that are not visible to the naked eye, allowing for early intervention.
- Dye Uptake Methods: Application of specific dyes that can penetrate demineralized areas, highlighting the extent of carious lesions.
2. Bacterial Testing
- Microbial Analysis: Testing for the presence of specific cariogenic bacteria (e.g., Streptococcus mutans) can provide insight into the caries risk and activity level.
- Salivary Testing: Salivary samples can be analyzed for bacterial counts, which can help assess the risk of caries development.
3. Assessment of Environmental Conditions
- pH Measurement: Monitoring the pH of saliva can indicate the potential for demineralization. A lower pH (acidic environment) is conducive to caries development.
- Salivary Flow: Evaluating salivary flow rates can help determine the protective capacity of saliva against caries. Reduced salivary flow can increase caries risk.
- Salivary Buffering Capacity: The ability of saliva to neutralize acids is crucial for maintaining oral health. Assessing this capacity can provide valuable information about caries risk.
Beveled Conventional Preparation
Characteristics
- External Walls: In a beveled conventional preparation, the external walls are perpendicular to the enamel surface.
- Beveled Margin: The enamel margin is beveled, which helps to create a smooth transition between the restoration and the tooth structure.
Benefits
- Improved Aesthetics: The beveling technique enhances the aesthetics of the restoration by minimizing the visibility of the margin.
- Strength and Bonding: Beveling can improve the bonding surface area and reduce the risk of marginal leakage, which is critical for the longevity of the restoration.
Incipient Lesions
Characteristics of Incipient Lesions
- Body of the Lesion: The body of the incipient lesion is the largest portion during the demineralizing phase, characterized by varying pore volumes (5% at the periphery to 25% at the center).
- Striae of Retzius: The striae of Retzius are well marked in the body of the lesion, indicating areas of preferential mineral dissolution. These striae represent the incremental growth lines of enamel and are critical in understanding caries progression.
Caries Penetration
- Initial Penetration: The first penetration of caries occurs via the striae of Retzius, highlighting the importance of these structures in the carious process. Understanding this can aid in the development of preventive strategies and treatment plans aimed at early intervention and management of carious lesions.
Cariogram: A Visual Tool for Understanding Caries Risk
The Cariogram is a graphical representation developed by Brathall et al. in 1999 to illustrate the interaction of various factors contributing to the development of dental caries. This tool helps dental professionals and patients understand the multifactorial nature of caries and assess individual risk levels.
1. Overview of the Cariogram
- Purpose: The Cariogram visually represents the interplay between different factors that influence caries development, allowing for a comprehensive assessment of an individual's caries risk.
- Structure: The Cariogram is depicted as a pie chart divided into five distinct sectors, each representing a specific contributing factor.
2. Sectors of the Cariogram
A. Green Sector: Chance to Avoid Caries
- Description: This sector estimates the likelihood of avoiding caries based on the individual's overall risk profile.
- Significance: A larger green area indicates a higher chance of avoiding caries, reflecting effective preventive measures and good oral hygiene practices.
B. Dark Blue Sector: Diet
- Description: This sector assesses dietary factors, including the content and frequency of sugar consumption.
- Components: It considers both the types of foods consumed (e.g., sugary snacks, acidic beverages) and how often they are eaten.
- Significance: A smaller dark blue area suggests a diet that is less conducive to caries development, while a larger area indicates a higher risk due to frequent sugar intake.
C. Red Sector: Bacteria
- Description: This sector evaluates the bacterial load in the mouth, particularly focusing on the amount of plaque and the presence of Streptococcus mutans.
- Components: It takes into account the quantity of plaque accumulation and the specific types of bacteria present.
- Significance: A larger red area indicates a higher bacterial presence, which correlates with an increased risk of caries.
D. Light Blue Sector: Susceptibility
- Description: This sector reflects the individual's susceptibility to caries, influenced by factors such as fluoride exposure, saliva secretion, and saliva buffering capacity.
- Components: It considers the effectiveness of fluoride programs, the volume of saliva produced, and the saliva's ability to neutralize acids.
- Significance: A larger light blue area suggests greater susceptibility to caries, while a smaller area indicates protective factors are in place.
E. Yellow Sector: Circumstances
- Description: This sector encompasses the individual's past caries experience and any related health conditions that may affect caries risk.
- Components: It includes the history of previous caries, dental treatments, and systemic diseases that may influence oral health.
- Significance: A larger yellow area indicates a higher risk based on past experiences and health conditions, while a smaller area suggests a more favorable history.
3. Clinical Implications of the Cariogram
A. Personalized Risk Assessment
- The Cariogram provides a visual and intuitive way to assess an individual's caries risk, allowing for tailored preventive strategies based on specific factors.
B. Patient Education
- By using the Cariogram, dental professionals can effectively communicate the multifactorial nature of caries to patients, helping them understand how their diet, oral hygiene, and other factors contribute to their risk.
C. Targeted Interventions
- The information derived from the Cariogram can guide dental professionals in developing targeted interventions, such as dietary counseling, fluoride treatments, and improved oral hygiene practices.
D. Monitoring Progress
- The Cariogram can be used over time to monitor changes in an individual's caries risk profile, allowing for adjustments in preventive strategies as needed.